<u>Given information:</u>
Mass of H2 = 2 g
Mass of O2 = 32 g
<u>To determine:</u>
Mass of H2O2 produced
<u>Explanation:</u>
The reaction between H2 and O2 can be given as:
H2 + O2 → H2O2
Based on the reaction stoichiometry:
1 mole of H2 reacts with 1 mole of O2 to form 1 mole of H2O2
# moles of H2 = mass of H2 / molar mass of H2 = 2 g/ 2 g.mol-1 = 1 mole
# moles of O2 = mass of O2/ molar mass of O2 = 32 g/ 32 g.mol-1 = 1 mole
Hence for the given reactant conditions, moles of H2O2 produced = 1
Mass of H2O2 = moles of H2O2 * molar mass H2O2 = 1 mole * 34 g.mole-1 = 34 g
<u>Ans</u>: 34 g of H2O2 is produced in this reaction
Answer: seen below.
Explanation: since the different means use in treating rabbit muscle mitochondria containing PDH complex. I will give different reactions that occurs.
The mitochondria preparation responds as follow;
Active pyruvate dehydrogenase (dephosphorylated) is converted to inactive pyruvate dehydrogenase (phosphorylated) and the rate of conversion of pyruvate to acetyl-CoA decreases.
The phosphoryl group on pyruvate dehydrogenase (dephosphorylated) phosphate is removed enzymatically to give active pyruvate dephosphorylated which increases the rate of conversion of pyruvate to acetyl-CoA.
Malonate inhibit succinate dehydrogenase, and citrate accumulates. Accumulation of this citrate inhibits citrate synthase, and acetyl-CoA accumulates. Increased level of this acetyl-CoA inhibits pyruvate dephosphorylated and the rate of conversion of pyruvate to acetyl-CoA decreases.
It is typically formed by the evaporation of salty water (such as sea water) which contains dissolved Na+ and Cl- ions. One finds rock salt deposits ringing dry lake beds, inland marginal seas, and enclosed bays and estuaries in arid regions of the world
Answer:1-methoxy-2,4-dinitrobenzene
Explanation:
The nitro groups are strongly electron withdrawing and promote nucleophilic substitution reactions where one of the original substituents is removed and replaced by a strong nucleophile such as the methoxy group. The mechanism of the reaction is attached below. The electron withdrawing nitrogroup assists the formation of the intermediate in the reaction as shown.