Answer:
Explanation:
Given that,
Mass of first car
M1= 328kg
The car is moving in positive direction of x axis with velocity
U1 = 19.1m/s
Velocity of second car
U2 = 13m/s, in the same direction as the first car..
Mass of second car
M2 = 790kg
Velocity of second car after collision
V2 = 15.1 m/s
Velocity of first car after collision
V1 =?
This is an elastic collision,
And using the conservation of momentum principle
Momentum before collision is equal to momentum after collision
P(before) = P(after)
M1•U1 + M2•U2 = M1•V1 + M2•V2
328 × 19.1 + 790 × 13 = 328 × V1 + 790 × 15.1
16534.8 = 328•V1 + 11929
328•V1 = 16534.8—11929
328•V1 = 4605.8
V1 = 4605.8/328
V1 = 14.04 m/s
The velocity of the first car after collision is 14.04 m/s
Answer:
___________________________________
<h3>a. Let
us assume a body has initial velocity 'u' and it is subjected to a uniform acceleration 'a' so that the final velocity 'v' after a time interval 't'. Now, By the definition of acceleration, we have:</h3>

It is first equation of motion.
___________________________________
<h3>
b. Let us assume a body moving with an initial velocity 'u'. Let it's final body 'v' after a time interval 't' and the distance travelled by the body becomes 's' then we already have,</h3>

Putting the value of v from the equation (i) in equation (ii), we have,

It is third equation of motion.
________________________________
<h3>
c. Let us assume a body moving with an initial velocity 'u'. Let it's final velocity be 'v' after a time and the distance travelled by the body be 's'. We already have,</h3>


Putting the value of t from (i) in the equation (ii)

It is forth equation of motion.
________________________________
Hope this helps...
Good luck on your assignment..
63360
5280 feet*12 inches in every foot=63360
Answer:
<h2>4000

</h2>
Explanation:
The temperature of 0.1 kg of liquid rises from 25°C to 50°C in 300 sec. Energy of 13,600 J was supplied during this time. Appartus was losing energy at the rate of 12 J/sec.
Let us assume the Specific heat capacity as
.
As there is no state change from liquid to gas, only Specific heat capacity is involved. Also, work done is approximately zero because volume does not change much. So,
Energy gained = Energy required to rise the temperature
Energy gained by liquid = 

∴ Specific heat capacity of liquid = 4000
Answer:
The minimum frequency is 702.22 Hz
Explanation:
The two speakers are adjusted as attached in the figure. From the given data we know that
=3m
=4m
By Pythagoras theorem

Now
The intensity at O when both speakers are on is given by

Here
- I is the intensity at O when both speakers are on which is given as 6

- I1 is the intensity of one speaker on which is 6

- δ is the Path difference which is given as

- λ is wavelength which is given as

Here
v is the speed of sound which is 320 m/s.
f is the frequency of the sound which is to be calculated.

where k=0,1,2
for minimum frequency
, k=1

So the minimum frequency is 702.22 Hz