The rotation of Earth is equivalent to one day which is comprised of 24 hours. To determine the number of miles in Earth's circumference, one simply have to multiply the given rate by the appropriate conversion factor and dimensional analysis. This is shown below.
C = (1038 mi/h)(24 h/1 day)
C = 24,912 miles
From the given choices, the nearest value would have to be 20,000 mile. The answer is the second choice.
Answer:
33 Celsius is 306.15 in absolute temperature
The kinetic energy of a book on a shelf is equal to the work done to lift the book to the shelf is false. The kinetic energy on the shelf is zero because it is not in action.
Answer:
T1 = 131.4 [N]
T2 = 261 [N]
Explanation:
To solve this problem we must make a sketch of how will be the semicircle, for this reason we conducted an internet search, to find the scheme of the problem. This scheme is attached in the first image.
Then we make a free body diagram, with this free body diagram, we raise the forces that act on the body. Since it is a problem involving static equilibrium, the sum of forces in any direction and moments must be equal to zero.
By performing a sum of forces on the Y axis equal to zero we can find an equation that relates the forces of tension T1 & T2.
The second equation can be determined by summing moments equal to zero, around the point of application of the T1 force. In this way we find the T2 force.
The value of T2, is replaced in the first equation and we can find the value for T1.
Therefore
T1 = 131.4 [N]
T2 = 261 [N]
The free body diagram and the developed equations can be seen in the second attached image.