Answer:
The decision designer is a step-wise process
Explanation:
A typical decision tree will be like this:
Are there any forces?
YES - then calculate the resultant forces NO - Then no calculations are needed
IF YES - Are the forces balanced? NO - Then no calculations
IF YES - Then calculations can be done.
Resolve the forces to find the resultant of the forces in the question.
Answer:
Explanation:
according to ohms law we know that
v=IR
given current =2 amps
given resistance =6Ω
so voltage is
v=2*6 =12 V
During Physical Change there would be a re-arrangements of atoms or molecules, changes of the arrangement may be change in the distance between atoms or molecules, change in the crystal form, .....etc
for example: water when heated it undergoes a Physical Change and turn into vapor, this means the heat cause the distance between water molecules to increase, so it transferred from the liquid form to the gas form.
NOTE that in Physical Change there is no change in the chemical structure and the material retains all its chemical properties, and no new compounds are produced.
again, A physical change is any change not involving a change in the substance's chemical identity. Matter undergoes chemical change when the composition of the substances changes: one or more substances combine or break up (as in a relationship) to form new substances.Physical changes occur when objects undergo a change that does not change their chemical nature. A physical change involves a change in physical properties. Physical properties can be observed without changing the type of matter. Examples of physical properties include: texture, shape, size, color, odor, volume, mass, weight, and density.
BUT in Chemical Change ( or Chemical Reaction ) there would be change in the chemical nature of the material undergoing a Chemical Change with the production of new compounds.
Answer:
2/R*sqrt (g*s*sin(θ)) = w
Explanation:
Assume:
- The cylinder with mass m
- The radius of cylinder R
- Distance traveled down the slope is s
- The angular speed at bottom of slope w
- The slope of the plane θ
- Frictionless surface.
Solution:
- Using energy principle at top and bottom of the slope. The exchange of gravitational potential energy at height h, and kinetic energy at the bottom of slope.
ΔPE = ΔKE
- The change in gravitational potential energy is given as m*g*h.
- The kinetic energy of the cylinder at the bottom is given as rotational motion: 0.5*I*w^2
- Where I is the moment of inertia of the cylinder I = 0.5*m*R^2
We have:
m*g*s*sin(θ) = 0.25*m*R^2*w^2
2/R*sqrt (g*s*sin(θ)) = w
- The angular velocity depends on plane geometry θ , distance travelled down slope s, Radius of the cylinder R , and gravitational acceleration g