Answer:
[H₂] = 1.61x10⁻³ M
Explanation:
2H₂S(g) ⇋ 2H₂(g) + S₂(g)
Kc = 9.30x10⁻⁸ = ![\frac{[H_{2}]^2[S_{2}]}{[H_{2}S]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH_%7B2%7D%5D%5E2%5BS_%7B2%7D%5D%7D%7B%5BH_%7B2%7DS%5D%5E2%7D)
First we <u>calculate the initial concentration</u>:
0.45 molH₂S / 3.0L = 0.15 M
The concentrations at equilibrium would be:
[H₂S] = 0.15 - 2x
[H₂] = 2x
[S₂] = x
We <u>put the data in the Kc expression and solve for x</u>:


We make a simplification because x<<< 0.0225:

x = 8.058x10⁻⁴
[H₂] = 2*x = 1.61x10⁻³ M
Answer:
You didn't show which element it is. The proton is the atomic number, the electron is the same number of protons, and the neutron is the atomic mass rounded to the nearest whole number minus the proton.
Explanation:
Answer:
0.00246kg
Explanation:
1g = $40.63
$100 = $100/40.63 = 2.46g
2.46/1000 g = 0.00246kg
Answer:
NaNO₃ and AgCl are the two products that can be formed.
Sodium nitrate, an aqueous solution and a solid silver chloride (precipitate)
Explanation:
We determine the dissociation of both salts
AgNO₃ (aq) → Ag⁺ (aq) + NO₃⁻ (aq)
NaCl (aq) → Na⁺ (aq) + Cl⁻ (aq)
We make the ionic equation:
Ag⁺ (aq) + NO₃⁻ (aq) + Na⁺ (aq) + Cl⁻ (aq) → NaNO₃(aq) + AgCl (s) ↓