Answer:
The quadratic polynomial with integer coefficients is
.
Step-by-step explanation:
Statement is incorrectly written. Correct form is described below:
<em>Find a quadratic polynomial with integer coefficients which has the following real zeros: </em>
<em>. </em>
Let be
and
roots of the quadratic function. By Algebra we know that:
(1)
Then, the quadratic polynomial is:


The quadratic polynomial with integer coefficients is
.
Answer:
it will be -19
Step-by-step explanation:
i hope it helps you
Respuesta:
28; 33
A (n) = 5n - 2
Explicación paso a paso:
A partir de los datos dados, 3, 8, 13, 18, 23…, podemos ver que cada valor sucesivo de la serie aumenta en 5;
Por lo tanto, los siguientes dos términos de la serie deberían ser:
23 + 5 = 28
28 + 5 = 33
La serie es una progresión aritmética:
Recuerde la fórmula general:
A (norte) = a + (norte - 1) d
Donde, a = Primer término = 3; d = diferencia común = 5
n = enésimo término
A (n) = 3 + (n-1) 5
A (n) = 3 + 5n - 5
A (n) = 5n - 2
Answer:
Step-by-step explanation:
13.6
Answer:
I don't get it
Step-by-step explanation: