When ΔG° is the change in Gibbs free energy
So according to ΔG° formula:
ΔG° = - R*T*(㏑K)
here when K = [NH3]^2/[N2][H2]^3 = Kc
and Kc = 9
and when T is the temperature in Kelvin = 350 + 273 = 623 K
and R is the universal gas constant = 8.314 1/mol.K
So by substitution in ΔG° formula:
∴ ΔG° = - 8.314 1/ mol.K * 623 K *㏑(9)
= - 4536
Answer:
Estoy confundido.Puedes ser un poco especifico sobre tu pregunta?
Explanation:
Answer: 3) 39.96 amu
Explanation:
Mass of isotope Ar- 36 = 35.97 amu
% abundance of isotope Ar- 36= 0.337% = 
Mass of isotope Ar- 38 = 37.96 amu
% abundance of isotope 2 = 0.063 % = 
Mass of isotope Ar- 40 = 39.96 amu
% abundance of isotope 2 = 99.600 % = 
Formula used for average atomic mass of an element :

![A=\sum[(35.97\times 3.37\times 10^{-3})+(37.96\times 6.3\times 10^{-4})+(39.96\times 0.996)]](https://tex.z-dn.net/?f=A%3D%5Csum%5B%2835.97%5Ctimes%203.37%5Ctimes%2010%5E%7B-3%7D%29%2B%2837.96%5Ctimes%206.3%5Ctimes%2010%5E%7B-4%7D%29%2B%2839.96%5Ctimes%200.996%29%5D)

Therefore, the average atomic mass of argon is 39.96 amu
carbon, hydrogen, nitrogen, and oxygen. the number infront is how many of each element there are, they are increasing and decreasing