Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
<span>True, as a postulate is the assumption of existence.</span>
Geometric sequences go up due to a common ratio. Here the common ratio can be worked out by dividing a term by its previous term e.g term 2 divided by term 1.

Therefore the common ratio is 6.
Subtract 2d from both sides
simplify 10 + 2.5d - 2d to 10 + 0.5d
subtract 10 from both sides
simplify 4 - 10 to -6
divide both sides by 0.5
simplify 6/0.5 to 12
switch the sides
Answer: d = -12.
Answer:
3c + 3 please give brainliest
Step-by-step explanation:
it might be subtraction sign please give brainliest