Answer:
0.13 g
Explanation:
mass of aluminum required = ( Dislocation length) / ( Dislocation density) × (density of metal)
3000 miles to cm ( 1 mile = 160934 cm) = 3000 miles × 160934 cm / 1 mile = 482802000 cm
density of Aluminium = 2.7 g /cm³
dislocation density of aluminum = 10¹⁰ cm³
mass of aluminum required = (482802000 cm × 2.7 g/cm³) / 10¹⁰ cm³ = 0.13 g
The orbital is the probable location of the electron of an atom.
Always remember the difference between Bohr and wave-mechanical model in terms of electrons!
Your questions answer is Electron!
But you should also know Bohr said electrons are in orbitals in a fixed proportion, but modern wave mechanical disagrees with this and said electrons are arranged in a very complex random proportion in a region called orbital!
Hope this helped
have a smiley day (:
The molecular weight of H2O is 18g/mol.
Therefore, 27.9 g H2O / (1mol/18g) = 0.155 mol H2O
Calculating only for the latent heat, the heat required to be released for this amount of H2O to condense is:
40.7 kJ/mol (0.155 mol) = 6.3 kJ or -6.3 kJ since it is to be released
Answer:
Explanation:
Industrial examples
Process Reactants, Product(s)
Ammonia synthesis (Haber–Bosch process) N2 + H2, NH3
Nitric acid synthesis (Ostwald process) NH3 + O2, HNO3
Hydrogen production by Steam reforming CH4 + H2O, H2 + CO2
Ethylene oxide synthesis C2H4 + O2, C2H4O