Lets find a primitive of y²-4x respect to the variable x. We need to think y (and y²) as constants here, so a primitive of y² would be xy² the same way that a primitive of k is xk (because we treat y² as constant). A primitive of x is x²/2, thus a primitive of 4x is 2x². Thus, a primitive of y²-4x is xy² - 2x². We can obtain any other primitive by summing a constant, however since we treated y as constant, then we have that
where c(y) only depends on y (thus, it is constant repsect with x).
We will derivate the expression in terms of y to obtain information about c(y)
Thus, is constant. We can take f(x,y) = xy²-2x². This function f satisfies that F = ∇f.
You need to use PEMDAS So first you do the parenthesis. 8*1=8. So now re-write the problem. 50+10*8+2 Now you are going to multiply. 10*=80 Now re-write the problem again. 10+80+2 10+80=90+2=92 So the answer to this problem is 92.
Here, we want to change the equation of a circle from general form to standard form. This is done by making the leading coefficients 1, completing the squares, and then rewriting the equation in standard form.
The leading coefficients of the given equation are 2, so we first want to divide by 2. This gives ...
x² +y² -4x -6y +8 = 0
Subtracting 8 puts us in better position to complete the squares.
x² +y² -4x -6y = -8
Now, we can add the squares of half the coefficients of the linear terms.
take your total, 38, subtract that by 10 (because you have to pay the admission fee) and you have 28 dollars spent on rides. each ride costs 2 dollars so divide 28 by 2 and you get 14.