Answer:
120
Step-by-step explanation:
Since we're dealing with a problem where the order matters and the first two letters are already chosen we need to subtract the number of letters and the number of available slots per group.
We use the permutation formula to find the answer, but before that let's check values.
n = 8
k = 5
Now since there are two letters already chosen we have to deduct two from both the value of n and k.
n = 6
k = 3
Now we can use the permutation formula:




The 3*2*1 cancels out and leaves us with:


So there are 120 possible ways to arrange eight letters into groups of five where order matters and the first two letters are already chosen.
The range is 11- 3 = 8 Adding 5 would not affect the range.
Answer:
b = 
Step-by-step explanation:
Given
k =
← multiply both sides by (v - b)
k(v - b) = brt ← distribute left side
kv - kb = brt ( subtract brt from both sides )
kv - kb - brt = 0 ( subtract kv from both sides )
- kb - brt = - kv ( multiply through by - 1 to clear the negatives )
kb + brt = kv ← factor out b from each term on the left
b(k + rt ) = kv ← divide both sides by (k + rt )
b = 
Answer:
b,d,f are the answers......