Answer:
y = -3x + 7
Step-by-step explanation:
Choosing two points from the given table:
Let (x1, y1) = (-3, 16)
(x2, y2) = (-1, 10)
Plug these given values into the slope formula:
m = (y2 - y1)/(x2 - x1)
= (10 - 16) / (-1 - (-3))
= -6 / (-1 + 3)
= -6/2
= -3
Therefore, the slope is -3.
Next, choose one of the points and plug into the <u>point-slope form</u>:
Let's use (-1, 10) as (x1, y1):
y - y1 = m(x - x1)
y - 10 = -3(x - (-1))
y - 10 = -3(x + 1)
y - 10 = -3x - 3
Add 10 on both sides to isolate y:
y - 10 + 10 = -3x - 3 + 10
y = -3x + 7
<span>A)Both m(x) and p(x) cross the x-axis at 7.
B)Both m(x) and p(x) cross the y-axis at 7.
C)Both m(x) and p(x) have the same output value at x = 7.
D)Both m(x) and p(x) have a maximum or minimum value at x = 7.
m(x) = p(x) at x = 7
</span><span>
True statement about x = 7.
C)Both m(x) and p(x) have the same output value at x = 7. </span><span>
</span>
Given the next quadratic function:

to sketch its graph, first, we need to find its vertex. The x-coordinate of the vertex is found as follows:

where <em>a</em> and <em>b</em> are the first two coefficients of the quadratic function. Substituting with a = 2 and b = 3, we get:

The y-coordinate of the vertex is found by substituting the x-coordinate in the quadratic function, as follows:

The factorization indicates that the curve crosses the x-axis at the points (-2, 0) and (1/2, 0). We also know that the curve crosses the y-axis at (0,-2). Connecting these points and the vertex (-0.75, -3.125) with a U-shaped curve, we get:
Answer: 
Step-by-step explanation:
I hope you mean y = x² - 12 and not y = 2x - 12.
You switch the y and x variables:
x = y² - 12
And solve for y:
x + 12 = y²
