Answer:
No it doesn't because y has two 3's
Step-by-step explanation:
Answer: see below
<u>Step-by-step explanation:</u>
1) 10, 2, 1.2, 1.12, 1.112, 1.1112

t₁ = 10
t₂ = 10/10 + 1 = 2
t₃ = 2/10 + 1 = 1.2
t₄ = 1.2/10 + 1 = 1.12
t₅ = 1.12/10 + 1 = 1.112
t₆ = 1.112/10 + 1 = 1.1112
2) 10, 2, -2, -4, -5, -5.5, ...

t₁ = 10
t₂ = 10/2 - 3 = 2
t₃ = 2/2 - 3 = -2
t₄ = -2/2 - 3 = -4
t₅ = -4/2 - 3 = -5
t₆ = -5/2 - 3 = -5.5
Answer:
The population of the city in 2002 is 469,280 while the population of the suburb is 730,720.
Step-by-step explanation:
- 6% of the city's population moves to the suburbs (and 94% stays in the city).
- 2% of the suburban population moves to the city (and 98% remains in the suburbs).
The migration matrix is given as:
![A= \left \begin{array}{cc} \\ C \\S \end{array} \right\left[ \begin{array}{cc} C&S\\ 0.94&0.06 \\0.02&0.98 \end{array} \right]](https://tex.z-dn.net/?f=A%3D%20%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20%5C%5C%20C%20%5C%5CS%20%5Cend%7Barray%7D%20%5Cright%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20C%26S%5C%5C%200.94%260.06%20%5C%5C0.02%260.98%20%5Cend%7Barray%7D%20%5Cright%5D)
The population in the year 2000 (initial state) is given as:
![\left[ \begin{array}{cc} C&S\\ 500,000&700,000 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20C%26S%5C%5C%20500%2C000%26700%2C000%20%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore, the population of the city and the suburb in 2002 (two years after) is:
![S_0A^2=\left \begin{array}{cc} [500,000&700,000]\\& \end{array} \right\left \begin{array}{cc} \end{array} \right\left[ \begin{array}{cc} 0.94&0.06 \\0.02&0.98 \end{array} \right]^2](https://tex.z-dn.net/?f=S_0A%5E2%3D%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5B500%2C000%26700%2C000%5D%5C%5C%26%20%20%5Cend%7Barray%7D%20%5Cright%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5Cend%7Barray%7D%20%5Cright%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.94%260.06%20%5C%5C0.02%260.98%20%5Cend%7Barray%7D%20%5Cright%5D%5E2)
![A^{2} = \left[ \begin{array}{cc} 0.8848 & 0.1152 \\\\ 0.0384 & 0.9616 \end{array} \right]](https://tex.z-dn.net/?f=A%5E%7B2%7D%20%3D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.8848%20%26%200.1152%20%5C%5C%5C%5C%200.0384%20%26%200.9616%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore:
![S_0A^2=\left \begin{array}{cc} [500,000&700,000]\\& \end{array} \right\left \begin{array}{cc} \end{array} \right \left[ \begin{array}{cc} 0.8848 & 0.1152 \\ 0.0384 & 0.9616 \end{array} \right]\\\\=\left[ \begin{array}{cc} 500,000*0.8848+700,000*0.0384& 500,000*0.1152 +700,000*0.9616 \end{array} \right]\\\\=\left[ \begin{array}{cc} 469280& 730720 \end{array} \right]](https://tex.z-dn.net/?f=S_0A%5E2%3D%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5B500%2C000%26700%2C000%5D%5C%5C%26%20%20%5Cend%7Barray%7D%20%5Cright%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5Cend%7Barray%7D%20%5Cright%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.8848%20%26%200.1152%20%5C%5C%200.0384%20%26%200.9616%20%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20500%2C000%2A0.8848%2B700%2C000%2A0.0384%26%20500%2C000%2A0.1152%20%2B700%2C000%2A0.9616%20%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20469280%26%20730720%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore, the population of the city in 2002 is 469,280 while the population of the suburb is 730,720.

<h2>
Explanation:</h2>
In this exercise, we have the following functions:

And they are defined for all real numbers x. So we have to write the following expressions:
First expression:

That is, we subtract s(x) from r(x):

Second expression:

That is, we get the product of s(x) and r(x):

Third expression:
Here we need to evaluate:

First of all, we find the sum of functions r(x) and s(x):

Finally, substituting x = -2:

<h2>Learn more: </h2>
Parabola: brainly.com/question/12178203
#LearnWithBrainly