1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gizmo_the_mogwai [7]
3 years ago
15

Solve 3(x - 2) < 18.

Mathematics
1 answer:
Anni [7]3 years ago
3 0

- {x | x < 8}

- Divide each term by  3  and simplify.

- x - 2 < 6

- Move all terms not containing  x  to the right side of the inequality.

You might be interested in
PLS HELP THIS IS A TEST
Pie

Answer:

D: 7

Step-by-step explanation:

1.75 (7) + 4.50

12.25 + 4.50

= 16.75

16.75 < 20

8 0
3 years ago
Solve the system of linear equations for x and y.(cos θ)x + (sin θ)y=1(−sin θ)x + (cos θ)y = 0x=y=
lys-0071 [83]

Answer:

\bold{x =cos\theta}\\\bold{y=sin\theta}

Step-by-step explanation:

The given system of linear equations is:

(cos\theta)x+(sin\theta)y=1\\(-sin\theta)x+(cos\theta)y=0

We have to solve the equations for the values of x, y.

Let us use elimination method in which we eliminate one of the variables from the two variables.

For this, let us multiply the first equation by sin\theta and second equation by cos\theta

Now, the equations become:

(cos\theta.sin\theta)x+(sin\theta.sin\theta)y=sin\theta\\\Rightarrow (cos\theta.sin\theta)x+(sin^2\theta)y=sin\theta ....... (1)\\\\(-sin\theta.cos\theta)x+(cos\theta.cos\theta)y=0\\\Rightarrow (-sin\theta.cos\theta)x+(cos^2\theta)y=0 ..... (2)

Now, let us add (1) and (2):

(sin^2\theta)y+(cos^2\theta)y=sin\theta\\\Rightarrow (sin^2\theta+cos^2\theta)y=sin\theta\\\Rightarrow (1)y=sin\theta\\\Rightarrow y = sin\theta

Using the equation:

(-sin\theta)x+(cos\theta)y=0

Putting value of y:

\Rightarrow (-sin\theta)x+(cos\theta)sin\theta=0\\\Rightarrow (sin\theta)x=(cos\theta)sin\theta\\\Rightarrow x = cos\theta

So, the answer to the system of linear equations is:

\bold{x =cos\theta}\\\bold{y=sin\theta}

7 0
2 years ago
There is a line that includes the point (6,9) and has a slope of 3. What is its equation in
Nostrana [21]

Answer:

y=3x-9

Step-by-step explanation:

6 0
2 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Please help stuck on question
vazorg [7]

Answer:

Suppose we have a polynomial of degree N with a leading coefficient A and roots {x₁, x₂, ..., xₙ}

We can write this polynomial as:

P(x) = A*(x - x₁)*(x - x₂)*...*(x - xₙ)

such that the terms:

(x - x₁), (x - x₂), etc...

are called the factors.

In this case, we know that the roots OF THE FACTORS

are:

(x = - 2)

(x = - (1 + √5))

(x = + 3i)

If the root of the polynomial is  x = -2, then the factor should be:

(x + 2)

which is zero when we evaluate x in -2

Then the correct option is the first one.

5 0
2 years ago
Other questions:
  • Find the gcf and lcm of 10and15
    13·1 answer
  • What are the solutions of –7x – 60 = x2 + 10x?
    13·2 answers
  • Which term best describes the system below if a=c and b=c then a=c
    7·1 answer
  • How could I get rid of the 3 shown in equation 1?
    7·1 answer
  • Plz help me answer this question
    9·1 answer
  • An aircraft has a total time in service of 468 hours. The Airworthiness Directive given was initially complied with at 454 hours
    11·1 answer
  • Need answers for a b and c, please help
    11·2 answers
  • Simplify.<br><br> 52+20<br><br><br><br><br> 5<br><br> 30<br><br> 45<br><br> 72
    8·2 answers
  • 20 divide ( 4 + 1) x 2
    11·2 answers
  • A video game sells for 79.99 it is marked down 30% what is the sale price on the video game
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!