Answer:
(5,-4)
Step-by-step explanation:
If reflected over the x-axis, the quadrilateral would be in the fourth quadrant. N' would be at (1,-1) and P' at (6,-1). To reflect, look at the y-coordinate of the point and turn it to negative. With point Q, it's at (5,4) so we just flip the 4 to -4 and that's our point! (5,-4)
Answer:
90
Step-by-step explanation:
Answer:
x = 14
Step-by-step explanation:
Extend line AB so that it intersects ray CE at point G. Then angles BGC and BAD are "alternate interior angles", hence congruent.
The angle at B is exterior to triangle BCG, and is equal to the sum of the interior angles at C and G:
138 = (376 -23x) +(x^2 -8x)
Subtracting 138 and collecting terms we have ...
x^2 -31x +238 = 0
For your calculator, a=1, b=-31, c=238.
__
<em>Additional comment</em>
You will find that the solutions to this are x = {14, 17}. You will also find that angle BCE will have corresponding values of 54° and -15°. That is, the solution x=17 is "extraneous." It is a solution to the equation, but not to the problem.
For x=14, the marked angles are A = 84°, C = 54°.
Answer:
0.2941 = 29.41% probability that it was manufactured during the first shift.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is

In which
P(B|A) is the probability of event B happening, given that A happened.
is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Defective
Event B: Manufactured during the first shift.
Probability of a defective item:
1% of 50%(first shift)
2% of 30%(second shift)
3% of 20%(third shift).
So

Probability of a defective item being produced on the first shift:
1% of 50%. So

What is the probability that it was manufactured during the first shift?

0.2941 = 29.41% probability that it was manufactured during the first shift.
I think its 61.64 im not 100% sure but I hope this helps