Consider the gas to be an ideal gas (it will obey all the introductory gas laws). Also you have to note that the gas will not change phase. It won't.
T_s (Temperature Start) = 95.3o C = 95.3 + 273 = 368.3 oK (degrees Kelvin)
T_e (Temperature End) = 0o C + 273 = 273 oK
Initial volume = Vi = 1.55 mL (no need to change to Liters. The answer will be in mL
Vi /Ts = Ve / Vs Ve is the unknown volume that you seek.
1.55 / 368.3 = Ve / 273
Ve = 1.55 * 273 / 368.3
Ve = 1.1489 mL
If your teacher is concerned about Sig digs, then 0.0 has only two.
Your answer should be 1.1 mL, but I'll give you the choice.
The best and most correct answer among the choices provided by your question is the fourth choice or letter D.
Electric current being detected and measured is not a process <span>in the operation of a Geiger counter.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
Fp = 36 N
Fq = 58 N
Explanation:
Let the left end be the reference end with string p closest to it.
Let CCW moments be positive
Sum moments about p to zero
1(9.8)[2 - 1] + Fq[6 - 2] - 5(9.8)[8/2 - 2] - 1.5(9.8)[5 - 2] - 2(9.8)[7 - 2] = 0
Fq[4] = 23.5(9.8)
Fq = 57.575 ≈ 58 N
Sum moments about q to zero
1(9.8)[6 - 1] - Fp[6 - 2] + 5(9.8)[6 - 8/2] + 1.5(9.8)[6 - 5] - 2(9.8)[7 - 6] = 0
Fp = 35.525 N
or
Sum vertical forces to zero
Fp + 57.575 - (9.8)(1 + 1.5 + 2 + 5) = 0
Fp = 35.525 ≈ 36 N
Answer:
4.9612 s
Explanation:
Applying,
T = 2π√(L/g)............... Equation 1
Where T = period of the pendulum, L = Lenght of the pendulum, g = acceleration due to gravity of the moon, π = pie.
From the question,
Given: L = 1 m, g = 1.6 m/s²
Constant: π = 3.14
Substitute these values into equation 1
T = 2×3.14×√(1/1.6)
T = 6.28√(0.625)
T = 6.28×0.79
T = 4.9612 s