Note: <em>The question states the time to go upstream is a number of times (not explicitly written) the time to go downstream. We'll assume a general number N</em>
Answer:

Explanation:
<u>Relative Speed</u>
If a boat is going upstream against the water current, the true speed of motion is
, being
the speed of the boat and
the speed of the water. If the boat is going downstream, the true speed becomes
.
The question states the time to go upstream is a number of times N (not explicitly written) the time to go downstream. The speed of an object is computed as

Where x is the distance traveled and t the time taken for that. The time can be computed by

If
is the time for the upstream travel and
is the time for the downstream travel, then

Siince the same distance x= 10 miles is traveled in both cases:

Simplifying and rearrangling

Operating

Solving for 



If N=3

We can use the required value of N to compute the speed of the boat as explained
Answer:
C. Both technicians A and B
Explanation:
From the physical definition, power is defined as the rate of a body doing work. It is expressed as
P = w/t watts
Where
w - is the work done or the energy of the system in joules
t - time
The unit of power is represented in watts.
Whenever there is a rate of change of energy in the system, it accounts for the efficiency of the power of the system.
Hence, the statements of both technicians are correct.
Answer:
Temperature is also a condition that affects the speed of sound. Heat, like sound, is a form of kinetic energy. Molecules at higher temperatures have more energy, thus they can vibrate faster. Since the molecules vibrate faster, sound waves can travel more quickly.