A wave is a result of the disturbance in the equilibrium state. There are two types of wave, transverse and longitudinal. Transverse wave affects amplitude while longitudinal wave affects the frequency of the wave. As for the transverse wave, the magnitude of the perpendicular disturbance of the wave is directly proportional to the amplitude of the wave. The higher the transverse disturbance the higher the amplitude.
Answer:
im sure your already past this but it's E.
Explanation:
This is because in this case potential energy is linear to height, which means that the higher the more potential energy.
Answer:
The torque about his shoulder is 34.3Nm.
The solution approach assumes that the weight of the boy's arm acts at the center of the boy's arm length 35cm from the shoulder.
Explanation:
The solution to the problem can be found in the attachment below.
To solve this problem we will apply the concepts related to wavelength, as well as Rayleigh's Criterion or Optical resolution, the optical limit due to diffraction can be calculated empirically from the following relationship,

Here,
= Wavelength
d= Diameter of aperture
= Angular resolution or diffraction angle
Our values are given as,

The frequency of the sound is 
The speed of the sound is 
The wavelength of the sound is

Here,
v = Velocity of the wave
f = Frequency
Replacing,


The diffraction condition is then,

Replacing,

d = 0.24 m
Therefore the diameter should be 0.24m