You see the -3 2nd to the left right?
Answer:
Answer to Suppose that IQ scores have a bell-shaped distribution with a mean of ... Question: Suppose That IQ Scores Have A Bell-shaped Distribution With A Mean Of 105 And A Standard Deviation Of 15. ... Please Do Not Round Your Answer. ... Using the empirical rule, what percentage of IQ scores are greater than 120?Step-by-step explanation:
Answer:
$1.50
Step-by-step explanation:
15*.10=1.50
The Bernoulli distribution is a distribution whose random variable can only take 0 or 1
- The value of E(x2) is p
- The value of V(x) is p(1 - p)
- The value of E(x79) is p
<h3>How to compute E(x2)</h3>
The distribution is given as:
p(0) = 1 - p
p(1) = p
The expected value of x2, E(x2) is calculated as:
![E(x^2) = \sum x^2 * P(x)](https://tex.z-dn.net/?f=E%28x%5E2%29%20%3D%20%5Csum%20x%5E2%20%2A%20P%28x%29)
So, we have:
![E(x^2) = 0^2 * (1- p) + 1^2 * p](https://tex.z-dn.net/?f=E%28x%5E2%29%20%3D%200%5E2%20%2A%20%281-%20p%29%20%2B%201%5E2%20%2A%20p)
Evaluate the exponents
![E(x^2) = 0 * (1- p) + 1 * p](https://tex.z-dn.net/?f=E%28x%5E2%29%20%3D%200%20%2A%20%281-%20p%29%20%2B%201%20%2A%20p)
Multiply
![E(x^2) = 0 +p](https://tex.z-dn.net/?f=E%28x%5E2%29%20%3D%200%20%2Bp)
Add
![E(x^2) = p](https://tex.z-dn.net/?f=E%28x%5E2%29%20%3D%20p)
Hence, the value of E(x2) is p
<h3>How to compute V(x)</h3>
This is calculated as:
![V(x) = E(x^2) - (E(x))^2](https://tex.z-dn.net/?f=V%28x%29%20%3D%20E%28x%5E2%29%20-%20%28E%28x%29%29%5E2)
Start by calculating E(x) using:
![E(x) = \sum x * P(x)](https://tex.z-dn.net/?f=E%28x%29%20%3D%20%5Csum%20x%20%2A%20P%28x%29)
So, we have:
![E(x) = 0 * (1- p) + 1 * p](https://tex.z-dn.net/?f=E%28x%29%20%3D%200%20%2A%20%281-%20p%29%20%2B%201%20%2A%20p)
![E(x) = p](https://tex.z-dn.net/?f=E%28x%29%20%3D%20p)
Recall that:
![V(x) = E(x^2) - (E(x))^2](https://tex.z-dn.net/?f=V%28x%29%20%3D%20E%28x%5E2%29%20-%20%28E%28x%29%29%5E2)
So, we have:
![V(x) = p - p^2](https://tex.z-dn.net/?f=V%28x%29%20%3D%20p%20-%20p%5E2)
Factor out p
![V(x) = p(1 - p)](https://tex.z-dn.net/?f=V%28x%29%20%3D%20p%281%20-%20p%29)
Hence, the value of V(x) is p(1 - p)
<h3>How to compute E(x79)</h3>
The expected value of x79, E(x79) is calculated as:
![E(x^{79}) = \sum x^{79} * P(x)](https://tex.z-dn.net/?f=E%28x%5E%7B79%7D%29%20%3D%20%5Csum%20x%5E%7B79%7D%20%2A%20P%28x%29)
So, we have:
![E(x^{79}) = 0^{79} * (1- p) + 1^{79} * p](https://tex.z-dn.net/?f=E%28x%5E%7B79%7D%29%20%3D%200%5E%7B79%7D%20%2A%20%281-%20p%29%20%2B%201%5E%7B79%7D%20%2A%20p)
Evaluate the exponents
![E(x^{79}) = 0 * (1- p) + 1 * p](https://tex.z-dn.net/?f=E%28x%5E%7B79%7D%29%20%3D%200%20%2A%20%281-%20p%29%20%2B%201%20%2A%20p)
Multiply
![E(x^{79}) = 0 + p](https://tex.z-dn.net/?f=E%28x%5E%7B79%7D%29%20%3D%200%20%2B%20p)
Add
![E(x^{79}) = p](https://tex.z-dn.net/?f=E%28x%5E%7B79%7D%29%20%3D%20p)
Hence, the value of E(x79) is p
Read more about probability distribution at:
brainly.com/question/15246027