Answer:
2
Step-by-step explanation:
So I'm going to use vieta's formula.
Let u and v the zeros of the given quadratic in ax^2+bx+c form.
By vieta's formula:
1) u+v=-b/a
2) uv=c/a
We are also given not by the formula but by this problem:
3) u+v=uv
If we plug 1) and 2) into 3) we get:
-b/a=c/a
Multiply both sides by a:
-b=c
Here we have:
a=3
b=-(3k-2)
c=-(k-6)
So we are solving
-b=c for k:
3k-2=-(k-6)
Distribute:
3k-2=-k+6
Add k on both sides:
4k-2=6
Add 2 on both side:
4k=8
Divide both sides by 4:
k=2
Let's check:
:


I'm going to solve
for x using the quadratic formula:







Let's see if uv=u+v holds.

Keep in mind you are multiplying conjugates:



Let's see what u+v is now:


We have confirmed uv=u+v for k=2.
Answer:He can bring up 13.8333333333 boxes each trip
Step-by-step explanation:
970-140= 830
830÷60=13.8333333333
Answer:
<h2>22</h2>
Step-by-step explanation:
<h3>Given, y = 3 </h3>
substitute this value in given expression
<em>=> 10y - 8</em>
<em>=</em><em>></em><em> </em><em>1</em><em>0</em><em>(</em><em>3</em><em>)</em><em> </em><em>-</em><em> </em><em>8</em><em> </em>
<em>=</em><em>></em><em> </em><em>3</em><em>0</em><em> </em><em>-</em><em> </em><em>8</em><em> </em>
<em>=</em><em>></em><em> </em><em>2</em><em>2</em><em>.</em><em>.</em><em>.</em><em>ans</em>
<h2>HOPE IT HELPS U!!!!</h2>