Answer:
(1)We get that all terms have same
then It is a Geometric Sequence.
(2)We get Common ratio of given sequence is not same. It is not an geometric sequence.
(3)We get the common ratio is same then it is a Geometric Sequence
(4)We get the common ratio is same then it is a Geometric Sequence.
(5)We get Common ratio of given sequence is not same. It is not an geometric sequence.
Step-by-step explanation:
Here, The Geometric Progression in the form:
![G.P: a, ar, ar^{2}, ar^{3}, ar^{4}, ar^{5}........................................., ar^{n-1}, ar^{n}.](https://tex.z-dn.net/?f=G.P%3A%20%20%20%20%20a%2C%20ar%2C%20ar%5E%7B2%7D%2C%20ar%5E%7B3%7D%2C%20ar%5E%7B4%7D%2C%20ar%5E%7B5%7D.........................................%2C%20ar%5E%7Bn-1%7D%2C%20ar%5E%7Bn%7D.)
Where ![a - First\ term\\r - Common \ ratio\\n - Number\ of\ terms\ of\ an\ progression](https://tex.z-dn.net/?f=a%20-%20First%5C%20term%5C%5Cr%20-%20Common%20%5C%20ratio%5C%5Cn%20-%20Number%5C%20of%5C%20terms%5C%20of%5C%20an%5C%20progression)
So, Check all that apply.
(1) ![4,2,1,\frac{1}{2},\frac{1}{4}](https://tex.z-dn.net/?f=4%2C2%2C1%2C%5Cfrac%7B1%7D%7B2%7D%2C%5Cfrac%7B1%7D%7B4%7D)
For the geometric Sequence Common ratio
must be same.
⇒ ![r= \frac{ar^{n} }{ar^{n-1} }](https://tex.z-dn.net/?f=r%3D%20%5Cfrac%7Bar%5E%7Bn%7D%20%7D%7Bar%5E%7Bn-1%7D%20%7D)
Then, Finding
for given sequence
![r=\frac{a_{2} }{a_{1} } =\frac{a_{3} }{a_{2} } =\frac{a_{4} }{a_{3} }............................\frac{ar^{n} }{ar^{n-1} } .](https://tex.z-dn.net/?f=r%3D%5Cfrac%7Ba_%7B2%7D%20%7D%7Ba_%7B1%7D%20%7D%20%3D%5Cfrac%7Ba_%7B3%7D%20%7D%7Ba_%7B2%7D%20%7D%20%3D%5Cfrac%7Ba_%7B4%7D%20%7D%7Ba_%7B3%7D%20%7D............................%5Cfrac%7Bar%5E%7Bn%7D%20%7D%7Bar%5E%7Bn-1%7D%20%20%7D%20.)
∴ ![r= \frac{2}{4}=\frac{1}{2}=\frac{\frac{1}{2} }{1} =\frac{\frac{1}{4} }{\frac{1}{2} }](https://tex.z-dn.net/?f=r%3D%20%5Cfrac%7B2%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B2%7D%3D%5Cfrac%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%7B1%7D%20%20%20%3D%5Cfrac%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%7B%5Cfrac%7B1%7D%7B2%7D%20%7D)
⇒ ![r= \frac{1}{2}=\frac{1}{2}=\frac{1}{2} } = \frac{1}{2} }](https://tex.z-dn.net/?f=r%3D%20%5Cfrac%7B1%7D%7B2%7D%3D%5Cfrac%7B1%7D%7B2%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%7D)
Clearly,
We get that all terms have same
then It is a Geometric Sequence.
(2) ![-2, 3,-4,5,-6.........](https://tex.z-dn.net/?f=-2%2C%203%2C-4%2C5%2C-6.........)
Same as above we will check the common ratio
⇒ ![r=\frac{3}{-2} =\frac{-4}{3} =\frac{5}{-4}=\frac{-6}{5}](https://tex.z-dn.net/?f=r%3D%5Cfrac%7B3%7D%7B-2%7D%20%3D%5Cfrac%7B-4%7D%7B3%7D%20%3D%5Cfrac%7B5%7D%7B-4%7D%3D%5Cfrac%7B-6%7D%7B5%7D)
⇒ ![r=\frac{3}{-2} \neq \frac{-4}{3} \neq \frac{5}{-4}\neq \frac{-6}{5}](https://tex.z-dn.net/?f=r%3D%5Cfrac%7B3%7D%7B-2%7D%20%5Cneq%20%5Cfrac%7B-4%7D%7B3%7D%20%5Cneq%20%5Cfrac%7B5%7D%7B-4%7D%5Cneq%20%5Cfrac%7B-6%7D%7B5%7D)
Clearly,
We get Common ratio of given sequence is not same. It is not an geometric sequence.
(3) ![2,6,18,54,162.................](https://tex.z-dn.net/?f=2%2C6%2C18%2C54%2C162.................)
Now checking common Ratio ![(r)](https://tex.z-dn.net/?f=%28r%29)
⇒ ![r=\frac{6}{2} =\frac{18}{6} =\frac{54}{18}=\frac{162}{54}](https://tex.z-dn.net/?f=r%3D%5Cfrac%7B6%7D%7B2%7D%20%3D%5Cfrac%7B18%7D%7B6%7D%20%3D%5Cfrac%7B54%7D%7B18%7D%3D%5Cfrac%7B162%7D%7B54%7D)
⇒ ![r=3=3=3=3](https://tex.z-dn.net/?f=r%3D3%3D3%3D3%3D3)
Therefore,
We get the common ratio is same then it is a Geometric Sequence.
(4) ![-4,-16,-64,-256.........](https://tex.z-dn.net/?f=-4%2C-16%2C-64%2C-256.........)
Now checking common Ratio ![(r)](https://tex.z-dn.net/?f=%28r%29)
⇒ ![r=\frac{-16}{-4} =\frac{-64}{-16} =\frac{-256}{-64}](https://tex.z-dn.net/?f=r%3D%5Cfrac%7B-16%7D%7B-4%7D%20%3D%5Cfrac%7B-64%7D%7B-16%7D%20%3D%5Cfrac%7B-256%7D%7B-64%7D)
⇒ ![r=4=4=4](https://tex.z-dn.net/?f=r%3D4%3D4%3D4)
Therefore,
We get the common ratio is same then it is a Geometric Sequence.
(5) ![-2,-4,-12,-48,-240............................](https://tex.z-dn.net/?f=-2%2C-4%2C-12%2C-48%2C-240............................)
Now checking common Ratio ![(r)](https://tex.z-dn.net/?f=%28r%29)
⇒ ![r=\frac{-4}{-2} =\frac{-12}{-4} =\frac{-48}{-12}=\frac{-240}{-48}](https://tex.z-dn.net/?f=r%3D%5Cfrac%7B-4%7D%7B-2%7D%20%3D%5Cfrac%7B-12%7D%7B-4%7D%20%3D%5Cfrac%7B-48%7D%7B-12%7D%3D%5Cfrac%7B-240%7D%7B-48%7D)
⇒ ![r= 2\neq 3\neq 4\neq 5](https://tex.z-dn.net/?f=r%3D%202%5Cneq%203%5Cneq%204%5Cneq%205)
Clearly,
We get Common ratio of given sequence is not same. It is not an geometric sequence.