X^2-6x+7=0
-b +/- sqrt b^2-4ac all over 2a
a=1 b= -6 and c=7
6+/- sqrt 36-4×1×7 all over 2×1
6+/- sqrt 8 all over 2
6+/- 2sqrt2 all over 2
reduce
3+/- sqrrt2
Menjawab:
[(√1-p²) -3√p] / 2
Penjelasan langkah demi langkah:
Dari identitas trigonometri, pemuaiannya benar:
Cos (A + B) = cosAcosB-sinAsinB
Menerapkan ini dalam memperluas cos (x + 60).
cos (x + 60) = cosxcos60 - sinxsin60
Jika sinx = p = berlawanan / sisi miring
opp = p, hyp = 1
adj² = 1²-p²
adj = √1-p²
Cos (x) = adj / hyp = √1-p² / 1
Cos (x) = √1-p²
Cos60 = 1/2 dan sin60 = √3 / 2
Mengganti nilai-nilai ini ke dalam rumus
cos (x + 60) = cosxcos60 - sinxsin60
cos (x + 60) = √1-p² (1/2) - p (√3 / 2)
cos (x + 60) = (√1-p²) / 2 - √3p / 2
Temukan KPK tersebut
cos (x + 60) = [(√1-p²) -3√p] / 2
Oleh karena itu cos (x + 60) = [(√1-p²) -3√p] / 2
Answer:
4/(x + 3)(x + 2)
Step-by-step explanation:
8x - 2 / (x + 3)(x - 1)(x + 2) =
4(x - 1)/(x + 3)(x - 1)(x + 2) =
4/(x + 3)(x + 2)
hope it helps
:D
(b) The monthly savings of Juan is $200.
(a) The monthly saving of Juan is $900.
(c) The monthly saving of Juan is $3,600.
As we know that
Savings = Income - expenses
So based on the above formula, the monthly savings in each case is as follows:
(b)
Monthly saving is
= $3,600 - $3,400
= $200
(a)
Monthly saving is
= $3,600 - $2,500
= $900
(c)
Monthly saving is
= $3,600 - $0
= $3,600
Here we assume the x be zero.
Therefore we can conclude that
(b) The monthly savings of Juan is $200.
(a) The monthly saving of Juan is $900.
(c) The monthly saving of Juan is $3,600.
Learn more: brainly.com/question/18051939