Answer:
(a) ![y = 350,000 \times (1 + 0.07132)^t](https://tex.z-dn.net/?f=y%20%3D%20350%2C000%20%5Ctimes%20%281%20%2B%200.07132%29%5Et)
(b) (i) The population after 8 hours is 607,325
(ii) The population after 24 hours is 1,828,643
(c) The rate of increase of the population as a percentage per hour is 7.132%
(d) The doubling time of the population is approximately, 10.06 hours
Step-by-step explanation:
(a) The initial population of the bacteria, y₁ = a = 350,000
The time the colony grows, t = 12 hours
The final population of bacteria in the colony, y₂ = 800,000
The exponential growth model, can be written as follows;
![y = a \cdot (1 + r)^t](https://tex.z-dn.net/?f=y%20%3D%20a%20%5Ccdot%20%281%20%2B%20r%29%5Et)
Plugging in the values, we get;
![800,000 = 350,000 \times (1 + r)^{12}](https://tex.z-dn.net/?f=800%2C000%20%3D%20350%2C000%20%5Ctimes%20%281%20%2B%20r%29%5E%7B12%7D)
Therefore;
(1 + r)¹² = 800,000/350,000 = 16/7
12·㏑(1 + r) = ㏑(16/7)
㏑(1 + r) = (㏑(16/7))/12
r = e^((㏑(16/7))/12) - 1 ≈ 0.07132
The model is therefore;
![y = 350,000 \times (1 + 0.07132)^t](https://tex.z-dn.net/?f=y%20%3D%20350%2C000%20%5Ctimes%20%281%20%2B%200.07132%29%5Et)
(b) (i) The population after 8 hours is given as follows;
y = 350,000 × (1 + 0.07132)⁸ ≈ 607,325.82
By rounding down, we have;
The population after 8 hours, y = 607,325
(ii) The population after 24 hours is given as follows;
y = 350,000 × (1 + 0.07132)²⁴ ≈ 1,828,643.92571
By rounding down, we have;
The population after 24 hours, y = 1,828,643
(c) The rate of increase of the population as a percentage per hour = r × 100
∴ The rate of increase of the population as a percentage = 0.07132 × 100 = 7.132%
(d) The doubling time of the population is the time it takes the population to double, which is given as follows;
Initial population = y
Final population = 2·y
The doubling time of the population is therefore;
![2 \cdot y = y \times (1 + 0.07132)^t](https://tex.z-dn.net/?f=2%20%5Ccdot%20y%20%3D%20y%20%5Ctimes%20%281%20%2B%200.07132%29%5Et)
Therefore, we have;
2·y/y =2 = ![(1 + 0.07132)^t](https://tex.z-dn.net/?f=%281%20%2B%200.07132%29%5Et)
t = ln2/(ln(1 + 0.07132)) ≈ 10.06
The doubling time of the population is approximately, 10.06 hours.