Answer:
\simeq 14.94 billion dollars
Step-by-step explanation:
During the period 1994 - 2004, the 'National Income' ,(NI) of Australia grew about 5.2% per year (measured in 2003 U. S, dollars). In 1994 , the NI of Australia was $ 4 billion.
Now,
(2020 - 1994) = 26
Assuming this rate of growth continues, the NI of Australia in the year 2020 (in billion dollars) will be,
![4 \times[\frac{(100 + 5.2)}{100}}]^{26}](https://tex.z-dn.net/?f=4%20%5Ctimes%5B%5Cfrac%7B%28100%20%2B%205.2%29%7D%7B100%7D%7D%5D%5E%7B26%7D)
=![4 \times[\frac{105.2}{100}]^{26}](https://tex.z-dn.net/?f=4%20%5Ctimes%5B%5Cfrac%7B105.2%7D%7B100%7D%5D%5E%7B26%7D)
=\simeq 14.94 billion dollars (answer)
Answer:
Use PEMDAS so division would be the first step
Step-by-step explanation:
1)Parentheses
2)Exponents
3)Multiplication
4)Division
5)Addition
6)Subtraction
Answer:
334.4 m²
Step-by-step explanation:
The formula for the area of a sector is given as:
1/2 × r² × θ
Where θ = Central angle
Area of a Circle = 700 m²
The formula for the area of a circle = πr²
r = Radius of a circle
r² = Area / π
r = √Area / π
r = √700/π
r = 14.927053304 m
Approximately, r = 14.93 m
Therefore, the area of the sector
= 1/2 × r² × θ
= 1/2 × 14.93² × 3 rad
= 334.35735 m²
Approximately, Area of the sector = 334.4 m²
Neither, the first one is greater than 5 and so is 11