No, the cone and the cylinder can't have congruent heights and bases.
<h3>
is it possible that the two cones have congruent bases and congruent heights?</h3>
The volume of a cylinder of radius R and height H is:
V = pi*R^2*H
And for a cone of radius R and height H is:
V = pi*R^2*H/3
So, for the same dimensions R and H, the cone has 1/3 of the volume of the cylinder.
Here, the cylinder has a volume of 120cm³ and the cone a volume of 360cm³, so the cone has 3 times the volume of the cylinder.
This means that the measures must be different, so the cone and the cylinder can't have congruent heights and bases.
If you want to learn more about volumes:
brainly.com/question/1972490
#SPJ1
Treat x^4 as the square of p: x^4 = p^2.
Then x^4 - 5x^2 - 36 = 0 becomes p^2 - 5p - 36 = 0.
This factors nicely, to (p-9)(p+4) = 0. Then p = 9 and p = -4.
Equating 9 and x^2, we find that x=3 or x=-3.
Equating -4 and x^2, we see that there's no real solution.
Show that both x=3 and x=-3 are real roots of x^4 - 5x^2 - 36 = 0.
The first answer is B
The second answer is D
Answer:
3
Step-by-step explanation: