Answer:
Step-by-step explanation:
1. 2x - 9y = 23
2 x = 9 y + 23
y = (2 x)/9 - 23/9
2 x - 9 y - 23 = 0
2. 5x - 3y = -1
5 x + 1 = 3 y
y = (5 x)/3 + 1/3
5 x - 3 y + 1 = 0
I belive that should help you out a bit :D
cot(<em>θ</em>) = cos(<em>θ</em>)/sin(<em>θ</em>)
So if both cot(<em>θ</em>) and cos(<em>θ</em>) are negative, that means sin(<em>θ</em>) must be positive.
Recall that
cot²(<em>θ</em>) + 1 = csc²(<em>θ</em>) = 1/sin²(<em>θ</em>)
so that
sin²(<em>θ</em>) = 1/(cot²(<em>θ</em>) + 1)
sin(<em>θ</em>) = 1 / √(cot²(<em>θ</em>) + 1)
Plug in cot(<em>θ</em>) = -2 and solve for sin(<em>θ</em>) :
sin(<em>θ</em>) = 1 / √((-2)² + 1)
sin(<em>θ</em>) = 1/√(5)
Answer:
x<-4
Step-by-step explanation:
First you have to add 4 by both sides, which will give you 8x<-32.
Then just divide both sides by 8 and you should get the same answer.