1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
13

Please someone help me...​

Mathematics
2 answers:
nasty-shy [4]3 years ago
8 0

Answer:   see proof below

<u>Step-by-step explanation:</u>

Use the following identities:

\cot\alpha=\dfrac{1}{\tan\alpha}\\\\\\\cot(\alpha-\beta)=\dfrac{1+\tan\alpha\cdot \tan\beta}{\tan\alpha-\tan\beta}

<u>Proof  LHS →  RHS</u>

Given:                  \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{1}{\cot 6A-\cot 2A}

Cot Identity:        \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{1}{\dfrac{1}{\tan 6A}-\dfrac{1}{\tan 2A}}

Simplify:              \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{1}{\dfrac{1}{\tan 6A}\bigg(\dfrac{\tan 2A}{\tan 2A}\bigg)-\dfrac{1}{\tan 2A}\bigg({\dfrac{\tan 6A}{\tan 6A}\bigg)}}

                         = \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{1}{\dfrac{\tan 2A-\tan 6A}{\tan 6A\cdot \tan 2A}}

                         = \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{\tan6A\cdot \tan 2A}{\tan 2A-\tan 6A}

                         = \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{\tan6A\cdot \tan 2A}{\tan 2A-\tan 6A}\bigg(\dfrac{-1}{-1}\bigg)

                        = \dfrac{1}{\tan 6A-\tan 2A}+\dfrac{\tan6A\cdot \tan 2A}{\tan 6A-\tan 2A}

                        = \dfrac{1+\tan6A\cdot \tan 2A}{\tan 6A-\tan 2A}

Sum Difference Identity:    cot(6A - 2A)

Simplify:                               cot 4A

cot 4A = cot 4A   \checkmark

laiz [17]3 years ago
6 0

Step-by-step explanation:

First factor out the negative sign from the expression and reorder the terms

That's

\frac{1}{ - (( \tan(2A) -  \tan(6A)  )}  -  \frac{1}{ \cot(6A)  -  \cot(2A) }

<u>Using trigonometric </u><u>identities</u>

That's

<h3>\cot(x)  =  \frac{1}{ \tan(x) }</h3>

<u>Rewrite the expression</u>

That's

\frac{1}{ - (( \tan(2A) -  \tan(6A)  )} -    \frac{1}{ \frac{1}{ \tan(6A) } }  -  \frac{1}{ \frac{1}{ \tan(2A) } }

We have

<h3>-  \frac{1}{  \tan(2A) -  \tan(6A)  } -   \frac{1}{ \frac{ \tan(2A) -  \tan(6A)  }{ \tan(6A) \tan(2A)  } }</h3>

<u>Rewrite the second fraction</u>

That's

<h3>-  \frac{1}{  \tan(2A) -  \tan(6A)  } -   \frac{ \tan(6A)  \tan(2A) }{ \tan(2A) -  \tan(6A)  }</h3>

Since they have the same denominator we can write the fraction as

-  \frac{1 +  \tan(6A) \tan(2A)  }{ \tan(2A) -  \tan(6A)  }

Using the identity

<h3>\frac{x}{y}  =  \frac{1}{ \frac{y}{x} }</h3>

<u>Rewrite the expression</u>

We have

<h3>-  \frac{1}{ \frac{ \tan(2A)  -  \tan(6A) }{1 +  \tan(6A) \tan(2A)  } }</h3>

<u>Using the trigonometric identity</u>

<h3>\frac{ \tan(x) -  \tan(y)  }{1 +  \tan(x)  \tan(y) }  =  \tan(x - y)</h3>

<u>Rewrite the expression</u>

That's

<h3>- \frac{1}{ \tan(2A -6A) }</h3>

Which is

<h3>-  \frac{1}{ \tan( - 4A) }</h3>

<u>Using the trigonometric identity</u>

<h3>\frac{1}{ \tan(x) }  =  \cot(x)</h3>

Rewrite the expression

That's

<h3>-  \cot( - 4A)</h3>

<u>Simplify the expression using symmetry of trigonometric functions</u>

That's

<h3>- ( -  \cot(4A) )</h3>

<u>Remove the parenthesis </u>

We have the final answer as

<h2>\cot(4A)</h2>

As proven

Hope this helps you

You might be interested in
An acute angle measures less than π/2 but greater than 0
Ivenika [448]
If you're looking for an angle in between those, basically you have to choose an angle between 0 and 90°. any angle should work (such as 15°, 45°, 60°, 75°, etc.)
8 0
3 years ago
Insert a digit to make the number divisible by 24 if possible:<br> 44_8<br> pls help
Nat2105 [25]

Answer:

it's 4488 Wich would make 187

5 0
3 years ago
1. What is the median of the data set?
icang [17]
For number 1, the median is 8
For number 2, the mode is C.100
And for number 3, the mean is D.410
4 0
3 years ago
Read 2 more answers
Substitution for y=4x+6 -5x-y=21
Sergio039 [100]
I have included a picture. In the picture you will find the work and final answer.

4 0
3 years ago
What is the slope of the line through (-10, 1) and (0,-4)?
Dahasolnce [82]

Answer:

B

Step-by-step explanation:

Slope=Rise/Run

5/-10==-0.5

Answer: B

8 0
3 years ago
Other questions:
  • What is the answer????
    9·2 answers
  • A population of n ????20 scores has a mean of???????? 15. one score in the population is changed from x ???? 8 to x ???? 28. wha
    15·1 answer
  • 4. The Navarro family uses an average of 225 gallons of water per day, 5 gallons of water per day, 5 gallons of water which goes
    13·2 answers
  • Please help me solve this
    9·1 answer
  • Write two inequalities to compare 25 and 23
    8·2 answers
  • What is the length of CD?
    15·1 answer
  • The areas of the squares adjacent to two sides of a right triangle are 32 units^2 2 squared and 32 units^2 Find the length, xxx,
    12·1 answer
  • Find the value of x in the following figure
    13·1 answer
  • I need major help on this question try your best
    14·1 answer
  • Solve for x, I'm confused
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!