1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
13

Please someone help me...​

Mathematics
2 answers:
nasty-shy [4]3 years ago
8 0

Answer:   see proof below

<u>Step-by-step explanation:</u>

Use the following identities:

\cot\alpha=\dfrac{1}{\tan\alpha}\\\\\\\cot(\alpha-\beta)=\dfrac{1+\tan\alpha\cdot \tan\beta}{\tan\alpha-\tan\beta}

<u>Proof  LHS →  RHS</u>

Given:                  \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{1}{\cot 6A-\cot 2A}

Cot Identity:        \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{1}{\dfrac{1}{\tan 6A}-\dfrac{1}{\tan 2A}}

Simplify:              \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{1}{\dfrac{1}{\tan 6A}\bigg(\dfrac{\tan 2A}{\tan 2A}\bigg)-\dfrac{1}{\tan 2A}\bigg({\dfrac{\tan 6A}{\tan 6A}\bigg)}}

                         = \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{1}{\dfrac{\tan 2A-\tan 6A}{\tan 6A\cdot \tan 2A}}

                         = \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{\tan6A\cdot \tan 2A}{\tan 2A-\tan 6A}

                         = \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{\tan6A\cdot \tan 2A}{\tan 2A-\tan 6A}\bigg(\dfrac{-1}{-1}\bigg)

                        = \dfrac{1}{\tan 6A-\tan 2A}+\dfrac{\tan6A\cdot \tan 2A}{\tan 6A-\tan 2A}

                        = \dfrac{1+\tan6A\cdot \tan 2A}{\tan 6A-\tan 2A}

Sum Difference Identity:    cot(6A - 2A)

Simplify:                               cot 4A

cot 4A = cot 4A   \checkmark

laiz [17]3 years ago
6 0

Step-by-step explanation:

First factor out the negative sign from the expression and reorder the terms

That's

\frac{1}{ - (( \tan(2A) -  \tan(6A)  )}  -  \frac{1}{ \cot(6A)  -  \cot(2A) }

<u>Using trigonometric </u><u>identities</u>

That's

<h3>\cot(x)  =  \frac{1}{ \tan(x) }</h3>

<u>Rewrite the expression</u>

That's

\frac{1}{ - (( \tan(2A) -  \tan(6A)  )} -    \frac{1}{ \frac{1}{ \tan(6A) } }  -  \frac{1}{ \frac{1}{ \tan(2A) } }

We have

<h3>-  \frac{1}{  \tan(2A) -  \tan(6A)  } -   \frac{1}{ \frac{ \tan(2A) -  \tan(6A)  }{ \tan(6A) \tan(2A)  } }</h3>

<u>Rewrite the second fraction</u>

That's

<h3>-  \frac{1}{  \tan(2A) -  \tan(6A)  } -   \frac{ \tan(6A)  \tan(2A) }{ \tan(2A) -  \tan(6A)  }</h3>

Since they have the same denominator we can write the fraction as

-  \frac{1 +  \tan(6A) \tan(2A)  }{ \tan(2A) -  \tan(6A)  }

Using the identity

<h3>\frac{x}{y}  =  \frac{1}{ \frac{y}{x} }</h3>

<u>Rewrite the expression</u>

We have

<h3>-  \frac{1}{ \frac{ \tan(2A)  -  \tan(6A) }{1 +  \tan(6A) \tan(2A)  } }</h3>

<u>Using the trigonometric identity</u>

<h3>\frac{ \tan(x) -  \tan(y)  }{1 +  \tan(x)  \tan(y) }  =  \tan(x - y)</h3>

<u>Rewrite the expression</u>

That's

<h3>- \frac{1}{ \tan(2A -6A) }</h3>

Which is

<h3>-  \frac{1}{ \tan( - 4A) }</h3>

<u>Using the trigonometric identity</u>

<h3>\frac{1}{ \tan(x) }  =  \cot(x)</h3>

Rewrite the expression

That's

<h3>-  \cot( - 4A)</h3>

<u>Simplify the expression using symmetry of trigonometric functions</u>

That's

<h3>- ( -  \cot(4A) )</h3>

<u>Remove the parenthesis </u>

We have the final answer as

<h2>\cot(4A)</h2>

As proven

Hope this helps you

You might be interested in
What is the midpoint of EC ?
sladkih [1.3K]

<u>Given</u>:

Given that the graph OACE.

The coordinates of the vertices OACE are O(0,0), A(2m, 2n), C(2p, 2r) and E(2t, 0)

We need to determine the midpoint of EC.

<u>Midpoint of EC:</u>

The midpoint of EC can be determined using the formula,

Midpoint=(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})

Substituting the coordinates E(2t,0) and C(2p, 2r), we get;

Midpoint=(\frac{2t+2p}{2},\frac{0+2r}{2})

Simplifying, we get;

Midpoint=(\frac{2(t+p)}{2},\frac{2r}{2})

Dividing, we get;

Midpoint=(t+p,r)

Thus, the midpoint of EC is (t + p, r)

Hence, Option A is the correct answer.

4 0
3 years ago
How many many weeks are in 105 days?​
In-s [12.5K]

Answer: 15 weeks

Step-by-step explanation:

Because there are 7 days in a week, simply divide 105/7 to get 15 weeks.

Hope it helps <3

5 0
3 years ago
Read 2 more answers
Find each product. Enter your final answer as a simplified fraction. (− 23 ) (− 38 ) ( 89 ) The product is
dimaraw [331]

Answer:

Negative 23 time negative 38 equals 552 because negative times negative gives positive

552 times 89 gives 49128

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
HELP!! WILL DO BRAINLIEST AN 32 POINTS!!!
DaniilM [7]

Answer:

9 weeks or B

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Graphs of the following equations are straight lines except :
scoundrel [369]

Answer:

D

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Help me on this please. I have some more also.
    6·1 answer
  • Write a real world problem for the equation 11x =385.
    9·1 answer
  • Will mark brainliest, a THX, friend request, and will rate ur answer
    14·1 answer
  • At the movie theater child admission is $5.20 and adult admission is $8.40.on Sunday 153 tickets were sold for a total sales of
    8·1 answer
  • Hi can anyone pls help me in dis math problem!!!!! I will mark u as brainliest
    11·1 answer
  • 6.8(6.7 – 7.2) – 2(4.6 + 1.2) = ???????
    6·2 answers
  • Solve the equation a/a^2-16+2/a-4=2/a+4
    7·1 answer
  • A right-angled triangle D E F, angle E marked right angle, side E F labeled 7, side D E labeled 24 and hypotenuse D F labeled 25
    12·1 answer
  • What is Max’s final number of his number if his starting number is 7?
    10·2 answers
  • Please help me.<br><br>List the sides of MNP in ascending order:<br>m&lt; M = 15, m &lt; N= 75
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!