1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
13

Please someone help me...​

Mathematics
2 answers:
nasty-shy [4]3 years ago
8 0

Answer:   see proof below

<u>Step-by-step explanation:</u>

Use the following identities:

\cot\alpha=\dfrac{1}{\tan\alpha}\\\\\\\cot(\alpha-\beta)=\dfrac{1+\tan\alpha\cdot \tan\beta}{\tan\alpha-\tan\beta}

<u>Proof  LHS →  RHS</u>

Given:                  \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{1}{\cot 6A-\cot 2A}

Cot Identity:        \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{1}{\dfrac{1}{\tan 6A}-\dfrac{1}{\tan 2A}}

Simplify:              \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{1}{\dfrac{1}{\tan 6A}\bigg(\dfrac{\tan 2A}{\tan 2A}\bigg)-\dfrac{1}{\tan 2A}\bigg({\dfrac{\tan 6A}{\tan 6A}\bigg)}}

                         = \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{1}{\dfrac{\tan 2A-\tan 6A}{\tan 6A\cdot \tan 2A}}

                         = \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{\tan6A\cdot \tan 2A}{\tan 2A-\tan 6A}

                         = \dfrac{1}{\tan 6A-\tan 2A}-\dfrac{\tan6A\cdot \tan 2A}{\tan 2A-\tan 6A}\bigg(\dfrac{-1}{-1}\bigg)

                        = \dfrac{1}{\tan 6A-\tan 2A}+\dfrac{\tan6A\cdot \tan 2A}{\tan 6A-\tan 2A}

                        = \dfrac{1+\tan6A\cdot \tan 2A}{\tan 6A-\tan 2A}

Sum Difference Identity:    cot(6A - 2A)

Simplify:                               cot 4A

cot 4A = cot 4A   \checkmark

laiz [17]3 years ago
6 0

Step-by-step explanation:

First factor out the negative sign from the expression and reorder the terms

That's

\frac{1}{ - (( \tan(2A) -  \tan(6A)  )}  -  \frac{1}{ \cot(6A)  -  \cot(2A) }

<u>Using trigonometric </u><u>identities</u>

That's

<h3>\cot(x)  =  \frac{1}{ \tan(x) }</h3>

<u>Rewrite the expression</u>

That's

\frac{1}{ - (( \tan(2A) -  \tan(6A)  )} -    \frac{1}{ \frac{1}{ \tan(6A) } }  -  \frac{1}{ \frac{1}{ \tan(2A) } }

We have

<h3>-  \frac{1}{  \tan(2A) -  \tan(6A)  } -   \frac{1}{ \frac{ \tan(2A) -  \tan(6A)  }{ \tan(6A) \tan(2A)  } }</h3>

<u>Rewrite the second fraction</u>

That's

<h3>-  \frac{1}{  \tan(2A) -  \tan(6A)  } -   \frac{ \tan(6A)  \tan(2A) }{ \tan(2A) -  \tan(6A)  }</h3>

Since they have the same denominator we can write the fraction as

-  \frac{1 +  \tan(6A) \tan(2A)  }{ \tan(2A) -  \tan(6A)  }

Using the identity

<h3>\frac{x}{y}  =  \frac{1}{ \frac{y}{x} }</h3>

<u>Rewrite the expression</u>

We have

<h3>-  \frac{1}{ \frac{ \tan(2A)  -  \tan(6A) }{1 +  \tan(6A) \tan(2A)  } }</h3>

<u>Using the trigonometric identity</u>

<h3>\frac{ \tan(x) -  \tan(y)  }{1 +  \tan(x)  \tan(y) }  =  \tan(x - y)</h3>

<u>Rewrite the expression</u>

That's

<h3>- \frac{1}{ \tan(2A -6A) }</h3>

Which is

<h3>-  \frac{1}{ \tan( - 4A) }</h3>

<u>Using the trigonometric identity</u>

<h3>\frac{1}{ \tan(x) }  =  \cot(x)</h3>

Rewrite the expression

That's

<h3>-  \cot( - 4A)</h3>

<u>Simplify the expression using symmetry of trigonometric functions</u>

That's

<h3>- ( -  \cot(4A) )</h3>

<u>Remove the parenthesis </u>

We have the final answer as

<h2>\cot(4A)</h2>

As proven

Hope this helps you

You might be interested in
Someone help me with this, The form for this problem says I’m wrong about the Domain
Artist 52 [7]

You are right about the domain.

3 0
3 years ago
A meal at a restaurant cost $34.50, before tip. You decide to leave the server an 18% tip. What is your total bill?
anastassius [24]
The tip is $6.21

with that being said, 34.50 + 6.21 = 40.71

the total cost is $40.71
3 0
3 years ago
Helppppppppppppppppppp please
Svetlanka [38]

Answer:

\sqrt[]{\frac{x+8}{4}}-3

Step-by-step explanation:

g(x)=4(x+3)^2-8

First rewrite g(x) as y

y=4(x+3)^2-8

Now swap y and x

x=4(y+3)^2-8

Add 8 on both sides.

x+8=4(y+3)^2-8+8

x+8=4(y+3)^2

Divide by 4.

\frac{x+8}{4} =\frac{4(y+3)^2}{4}

\frac{x+8}{4}=(y+3)^2

Extract the square root on both sides.

\sqrt[]{\frac{x+8}{4}}=\sqrt[]{(y+3)^2}

\sqrt[]{\frac{x+8}{4}}=y+3

Subtract 3 on both sides.

\sqrt[]{\frac{x+8}{4}}-3=y+3-3

\sqrt[]{\frac{x+8}{4}}-3=y

4 0
3 years ago
What is 100/20and 54/7
Deffense [45]

Answer:

they are improper fractions

5 0
3 years ago
¿Cuál es el valor de la siguiente expresión? (-12) - (+8)
Agata [3.3K]

Answer:

huh? i really dont understand

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • I really dont get this
    6·2 answers
  • 24 is equal to 3 more than the product of 7 and number
    13·1 answer
  • If f(x) = (3x+7)^2 ,then f(1) =
    8·2 answers
  • -15 + 12x = 5x + 7 -3x<br> SOLVE FOR X
    10·2 answers
  • Write 8,840 in scientific notation.
    12·1 answer
  • Solve for x. while you solve it can you show work pls
    7·1 answer
  • Read the excerpt from “A Century Ride.” When she came forward at Commencement, in a delightful little Greenaway gown of white mu
    7·1 answer
  • helppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
    9·2 answers
  • Which number line models the sum of 1 + (-2) correctly?
    11·2 answers
  • Scenario
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!