<span>
1. Find the exact value by using a half-angle identity. sin 22.5°
</span>
Using the half angle formula you get:
<span><span><span><span>sin2(</span>θ)=12<span>[1−<span>cos(2</span>θ)]</span></span>
</span>if </span><span><span>θ=22.5°</span> then </span><span><span><span>2θ=45°</span>
</span>so you get:
</span><span><span><span>sin2(22.5°)</span>=12<span>[1−<span>cos(45°)</span>]</span></span>
</span><span><span><span><span><span>sin2(22.5°)</span>=12[</span><span>1−<span>√2/2]</span><span>=<span><span>2−√2</span>4</span>
</span></span></span>and square root both sides:
</span><span><span><span><span><span>sin(22.5°)</span>=±</span><span>√<span><span>2−√2</span>4</span>=±0.382</span></span>
</span>so </span></span>
<span>
sin(22.5°)=0.382
the answer is the letter D) one half times the square root of quantity two minus square root of two
</span>
<span>2. Verify the identity.
cot x minus pi divided by two. </span>=
-tan x
Cot(x-pi/2)=-tan(x)
sin(A − B) = sin A cos B −
cos A sin B
sin(x – pi/2) = sin x cos (pi/2)
− cos x sin (pi/2)=-cosx
cos(A − B) = cos A cos B − sin
A sin B
cos(x− pi/2) = cos x cos pi/2
− sin x sin pi/2=-sinx
Cot(x-pi/2)=cos(x-pi/2)/sin(x-pi/2)
<span>=
(-sinx)/(-cosx)=-tanx--------------ok</span>