Answer:
Step-by-step explanation: where’s the slope
Answer:
Here's one way to do it
Step-by-step explanation:
1. Solve the inequality for y
5x - y > -3
-y > -5x - 3
y < 5x + 3
2. Plot a few points for the "y =" line
I chose
\begin{gathered}\begin{array}{rr}\mathbf{x} & \mathbf{y} \\-2 & -7 \\-1 & -2 \\0 & 3 \\1 & 8 \\2 & 13 \\\end{array}\end{gathered}
x
−2
−1
0
1
2
y
−7
−2
3
8
13
You should get a graph like Fig 1.
3. Draw a straight line through the points
Make it a dashed line because the inequality is "<", to show that points on the line do not satisfy the inequality.
See Fig. 2.
4. Test a point to see if it satisfies the inequality
I like to use the origin,(0,0), for easy calculating.
y < 5x + 3
0 < 0 + 3
0 < 3. TRUE.
The condition is TRUE.
Shade the side of the line that contains the point (the bottom side).
And you're done (See Fig. 3).
Answer:
minimum of 13 chairs must be sold to reach a target of $6500
and a max of 20 chairs can be solved.
Step-by-step explanation:
Given that:
Price of chair = $150
Price of table = $400
Let the number of chairs be denoted by c and tables by t,
According to given condition:
t + c = 30 ----------- eq1
t(150) + c(400) = 6500 ------ eq2
Given that:
10 tables were sold so:
t = 10
Putting in eq1
c = 20 (max)
As the minimum target is $6500 so from eq2
10(150) + 400c = 6500
400c = 6500 - 1500
400c = 5000
c = 5000/400
c = 12.5
by rounding off
c = 13
So a minimum of 13 chairs must be sold to reach a target of $6500
i hope it will help you!
X-6y=6 slope: 1/6 y-intercept (0,1)
X= 0,6 y= -1, 0
X+3y+12=0 slope: 1/3
Y-intercept (0,4) x= -12, 0 Y= 0,4
8a-9b= 9/8 slope (0 ,7/8) x= -1,1 Y= -1/4,2
3a+b=7 1/3 (0,7/3) x= 4,7 Y=1,0