Answer:
Use a ratio of 0.44 mol lactate to 1 mol of lactic acid
Explanation:
John could prepare a lactate buffer.
He can use the Henderson-Hasselbalch equation to find the acid/base ratio for the buffer.
![\text{pH} = \text{pK}_{\text{a}} + \log\dfrac{\text{[A$^{-}$]}}{\text{[HA]}}\\\\3.5 = 3.86 + \log\dfrac{\text{[A$^{-}$]}}{\text{[HA]}}\\\\\log\dfrac{\text{[A$^{-}$]}}{\text{[HA]}} = 3.5 - 3.86 = -0.36\\\\\dfrac{\text{[A$^{-}$]}}{\text{[HA]}} = 10^{-0.36} = \mathbf{0.44}](https://tex.z-dn.net/?f=%5Ctext%7BpH%7D%20%3D%20%5Ctext%7BpK%7D_%7B%5Ctext%7Ba%7D%7D%20%2B%20%5Clog%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%5C%5C%5C%5C3.5%20%3D%203.86%20%2B%20%5Clog%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%5C%5C%5C%5C%5Clog%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%20%3D%203.5%20-%203.86%20%3D%20-0.36%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%20%3D%2010%5E%7B-0.36%7D%20%3D%20%5Cmathbf%7B0.44%7D)
He should use a ratio of 0.44 mol lactate to 1 mol of lactic acid.
For example, he could mix equal volumes of 0.044 mol·L⁻¹ lactate and 0.1 mol·L⁻¹ lactic acid.
Answer:
94.2 g/mol
Explanation:
Ideal Gases Law can useful to solve this
P . V = n . R . T
We need to make some conversions
740 Torr . 1 atm/ 760 Torr = 0.974 atm
100°C + 273 = 373K
Let's replace the values
0.974 atm . 1 L = n . 0.082 L.atm/ mol.K . 373K
n will determine the number of moles
(0.974 atm . 1 L) / (0.082 L.atm/ mol.K . 373K)
n = 0.032 moles
This amount is the weigh for 3 g of gas. How many grams does 1 mol weighs?
Molecular weight → g/mol → 3 g/0.032 moles = 94.2 g/mol
The answer to your question is Hubble’s law
C₄H₉OH + HBr = C₄H₉Br + H2O
Δmole of alcohol gives 1 mole of bromobutanol
HBr is in excess, so the yield of the product is limited by the alcohol
Wt. of 1 butanol = 18
Molar mass of the butanol = 74.12 g/mole
Moles of the alcohol = 1/74.12 = 0.01349 moles
So, moles of bromobutane = 0.01349 moles
Molar mass of C₄H₉Br = 137.018 g/moles
So, theoretical mass of bromobutane is = 0.01349 × 137.0.18
= 1.85 g