Answer:
<h3>The answer is 7.42 </h3>
Explanation:
The pH of a solution can be found by using the formula
From the question we have
We have the final answer as
<h3>7.42 </h3>
Hope this helps you
Which of these is an isoelectronic series? 1) na+, k+, rb+, cs+ 2) k+, ca2+, or, s2– 3) na+, mg2+, s2–, cl– 4) li, be, b, c 5) n
ss7ja [257]
An isoelectronic series is where all of the ions listed have the same number of electrons in their atoms. When an atom has net charge of zero or neutral, it has equal number of protons and electrons. Hence, it means that the atomic number = no. of protons = no. of electrons. If these atoms become ions, they gain a net charge of + or -. Positive ions are cations. This means that they readily GIVE UP electrons, whereas negative ions (anions) readily ACCEPT electrons. So, to know which of these are isoelectronic, let's establish first the number of electron in a neutral atom from the periodic table:
Na=11; K=19; Rb=37; Cs = 55; Ca=20; S=16; Mg=12; Li=3; Be=4; B=5; C=6
A. Na⁺: 11-1 = 10 electrons
K⁺: 19 - 1 = 18 electrons
Rb⁺: 37-1 = 36 electrons
B. K⁺: 19 - 1 = 18 electrons
Ca²⁺: 20 - 2 = 18 electrons
S²⁻: 16 +2 = 18 electrons
C. Na⁺: 11-1 = 10 electrons
Mg²⁺: 12 - 2 = 10 electrons
S²⁻: 16 +2 = 18 electrons
D. Li=3 electrons
Be=4 electrons
B=5 electrons
C=6 electrons
The answer is letter B.
Find the number of moles
C = n / V
C(Concentration) = 0.30 moles / L
V ( Volume) = 2 L
n = ??
n = C * V
n = 0.30 mol / L * 2 L
n = 0.60 mol
Find the molar mass
2Na = 23 * 2 = 46 grams
1S = 32 * 1 = 32 grams
O4 = 16 * 4 = 64 grams
Total = 142 grams / mol
Find the mass
n = given mass / molar mass
n = 0.06 mol
molar Mass = 142 grams / mol
given mass = ???
given mass = molar mass * mols
given mass = 142 * 0.6
given mass = 85.2 grams.
85.2 are in a 2 L solution that has a concentration of 0.6 mol/L
11.0 kg = (11.0 kg)(1000 g/kg) = 11000 g
(11000 g)/(1400 cm3) = 7.857 g/cm3
Simplified = 7.86 g/cm3
<span>0.38
You first calculate the total moles by dividing the grams by molecular weight:
45 g N2 / 28.02 g/mol = 1.6 mol N2
40 g Ar / 39.95 g/mol = 1.0 mol
Then you divide the moles of Ar by the total number of moles:
1.0 / (1.6 + 1.0) = 0.38 mol fraction</span>