An occluded front forms when a cold front catches up with a warm front. So it would bring Sun and warmth.
Answer:
1. the electromagnetic wave.
Explanation:
Mathematically,
wavelength = velocity ÷ frequency
A mechanical wave is a wave that is not capable of transmitting its energy through a vacuum. Mechanical waves require a medium in order to transport their energy from one location to another. A sound wave is an example of a mechanical wave. Sound waves are incapable of traveling through a vacuum.
Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter, increasing frequency decreases wavelength.
Sound waves (which obviously travel at the speed of sound) are much slower than electromagnetic waves (which travel at the speed of light.)
Electromagnetic waves are much faster than sound waves and If the Velocity of the wave increases and the frequency is constant, the wavelength also increases.
Answer:
a) -41.1 Joule
b) 108.38 Kelvin
Explanation:
Pressure = P = 290 Pa
Initial volume of gas = V₁ = 0.62 m³
Final volume of gas = V₂ = 0.21 m³
Initial temperature of gas = T₁ = 320 K
Heat loss = Q = -160 J
Work done = PΔV
⇒Work done = 290×(0.21-0.62)
⇒Work done = -118.9 J
a) Change in internal energy = Heat - Work
ΔU = -160 -(-118.9)
⇒ΔU = -41.1 J
∴ Change in internal energy is -41.1 J
b) V₁/V₂ = T₁/T₂
⇒T₂ = T₁V₂/V₁
⇒T₂ = 320×0.21/0.62
⇒T₂ = 108.38 K
∴ Final temperature of the gas is 108.38 Kelvin
The correct answer is A. 32.5
Mechanical advantage is the ratio of force that is input into a machine to the force output.
Mechanical advantage of a wheel and axle is calculated by dividing the radius of the wheel by that of the axle.
MA=R/r where R is the radius of the wheel and r is the radius of the axle.
Substituting for the values in the question gives:
MA=26cm/0.8cm
=32.5
Answer:
Your question was incomplete so here is the complete question and answer.
Q. When exercising in the heat, which of the following hydration strategies is best for temperature regulation during an event (e.g., 10K race)
a) plain water
b) 5-7 percent glucose solution
c) Glucose polymer solution of 6-8 percent
d) There appears to be no difference among these different forms of hydration techniques relative to temperature regulation.
Ans. d) There appears to be no difference among these different forms of hydration techniques relative to temperature regulation.
Explanation:
Temperature Regulation is an important phenomenon for the person exposed to extreme hot conditions or weather. Exercising in hot conditions increase the body temperature. Greater and intense exercise, greater the production of heat. Then the heat dissipation takes place in the form of excessive sweating which results in dehydration. That was just the brief overview of temperature regulation. Above mentioned techniques are equally good hydration techniques so there is no difference at all. You can have a plain water or glucose solutions of above mentioned percentages.