Answer:
Within our homes, temperature sensors are used in many electrical appliances, from our refrigerators and freezers to help regulate and maintain cold temperatures as well as within stoves and ovens to ensure that they heat to the required levels for cooking, air confectioners/heaters.
Explanation:
A temperature sensor is a device used to measure temperature. This can be air temperature, liquid temperature or the temperature of solid matter. There are different types of temperature sensors available and they each use different technologies and principles to take the temperature measurement.
Multiply (Saturn radii) by (60,268) to get the distance in kilometers.
(This is the radius of the planet, not it's orbit.)
<span>The land between two normal faults moves upward to form a
Answer:D</span><span>
fault-block mountain.</span>
Given Information:
Voltage of circuit A = Va = 208 Volts
Current of circuit A = Ia = 40 Amps
Voltage of circuit B = Vb = 120 Volts
Current of circuit B = Ib = 20 Amps
Required Information:
Ratio of power = Pa/Pb = ?
Answer:
Ratio of power = Pa/Pb = 52/15
Explanation:
Power can be calculated using Ohm's law
P = VI
Where V is the voltage and I is the current flowing in the circuit.
The power delivered by circuit A is
Pa = Va*Ia
Pa = 208*40
Pa = 8320 Watts
The power delivered by circuit B is
Pb = Vb*Ib
Pb = 120*20
Pb = 2400 Watts
Therefore, the ratio of the maximum power delivered by circuit A to that delivered by circuit B is
Pa/Pb = 8320/2400
Pa/Pb = 52/15
Answer:

Explanation:
Here two charges are placed at distance "d" apart
now the net value of electric field at some position between two charges will be ZERO
so we will have
electric field due to charge 1 = electric field due to charge 2

Let the position where net field is zero will lie at distance "r" from q1

now we will have

now square root both sides

now we have

so we have
