what is the product of -3 and 3
-3*3 = -9
Answer:
x = (3a + 8)/b
Step-by-step explanation:
a(5 - 2) = bx – 8
bx = a(5 - 2) + 8
x = (3a + 8)/b
<u>Find scale Factor:</u>
<u>
</u>


![\cfrac{length_1}{length_2} = \sqrt[3]{\cfrac{125}{1000} }](https://tex.z-dn.net/?f=%5Ccfrac%7Blength_1%7D%7Blength_2%7D%20%3D%20%20%5Csqrt%5B3%5D%7B%5Ccfrac%7B125%7D%7B1000%7D%20%7D%20%20)

<u>Find Surface area of the larger solid:
</u>




Answer: 600 cm²
Answer:
130
Step-by-step explanation:
31+19=50
Angle in a triangle add up to 180
180-50=130
Answer:
see below
Step-by-step explanation:
Angle ACE = DCE since they are vertical angles
Angle A = Angle E parallel lines cut by a transversal form congruent alternate interior angles
Angle B = Angle D parallel lines cut by a transversal form congruent alternate interior angles
When all three angles are equal, the triangles are similar.
We can use ratios to find DE
DE CE
------- = ----------
AB AC
DE 8
------- = ----------
12 10
Using cross products
10 DE = 8*12
10 DE = 96
Divide by 10
DE = 9.6