Answer:
Same
Explanation:
Let R be the resistance of the cell and E be the emf.
Let i be the current in the circuit.
i = E / R ..... (1)
Now emf and resistance be doubled.
so, i' = 2E/2R = E/R
So, i' = i (From equation (1)
Current remains same.
Yes.
In fact, from the graph we see that the threshold frequency (the minimum energy of the incoming energy needed to extract a photoelectron from the material) is
(we see it because this is the frequency at which the maximum kinetic energy of the emitted electron is zero).
The incoming photon in this problem has a frequency of 8.0 E14 Hz, so above the threshold frequency, therefore it is enough to extract photoelectrons from the material.
To solve the exercise, the key concept to be addressed is the Mass Center.
The center of mass of an object is measured as,


Our values are given by,







Replacing the values in our previous equation we have,






Therefore the mass of the meter stick is 7.928g
Call the capacitance C.
<span>Note the energy in a capacitor with voltage V is E =½CV². </span>
<span>Initial energy = ½C(12)² = 72C </span>
<span>40% of energy is delivered, so 60% remains.in the capacitor. </span>
<span>Remaining energy = (60/100) x 72C =43.2C </span>
<span>If the final potential difference is X, the energy stored is ½CX² </span>
<span>½CX² = 43.2C </span>
<span>X² = 2 x 43.2 = 86.4 </span>
<span>X = 9.3V</span>
Answer:

Therefore, highest point that the cannon ball reaches is 168.7m
Explanation:
the cannon is fired at an angle 30 o to the horizonatal with a speed of 155 m/s
highest point that the cannon ball reaches?

g = 9.8m/s2

Therefore, highest point that the cannon ball reaches is 168.7m