<span>In liver, the most intensively studied transmembrane and intracellular signal transduction pathways are the Janus kinase signal transduction pathway, the mitogen-activated protein kinases signal transduction pathway, the transforming growth factor β signal transduction pathway, the tumor necrosis factor α signal transduction pathway and the recently discovered sphingolipid signal transduction pathway. All of them are activated by many different cytokines and growth factors. They regulate specific cell mechanisms such as hepatocytes proliferation, growth, differentiation, adhesion, apoptosis, and synthesis and degradation of the extracellular matrix. The replication cycle of hepatitis C virus (HCV) is intracellular and requires signal </span>
Lots of options on what to eat
Lots of ways to get energy
Lots of ways to be resourceful.
Explanation:
Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate (through the process of glycolysis in the cytoplasm).
overall: C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≈38 ATP
Further Explanation:
In all eukaryotic cells, mitochondria are small cellular organelles bound by membranes, these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is stored within the molecule ATP which is produced.
Oxidative phosphorylation follows; this is a process in which the NADH and FADH2 made in previous steps of respiration process give up electrons in the electron transport chain these are converted it to their previous forms, NADH+ and FAD. Electrons continue to move down the chain the energy they release is used in pumping protons out of the matrix of the mitochondria.
This forms a gradient where there is a differential in the number of protons on either side of the membrane the protons flow or re-enter the matrix through the enzyme ATP synthase, which makes the energy storage molecules of ATP from the reduction of ADP. At the end of the electron transport, three molecules of oxygen accept electrons and protons to form molecules of water...
- Glycolysis: occurs in the cytoplasm. 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules. (2 ATP are utilized for a net ATP of 2)
- The Citric acid or Kreb's cycle: in the mitochondrial matrix- 6 molecules of CO2 are produced by combining oxygen and the carbon within pyruvate, 2 ATP oxygen molecules, 8 NADH and 2 FADH2.
- The electron transport chain, ETC: in the inner mitochondrial membrane, 34 ATP, electrons combine with H+ split from 10 NADH, 4 FADH2, renewing the number of electron acceptors and 3 oxygen; this forms 6 H2O, 10 NAD+, 4 FAD.
Learn more about cellular life at brainly.com/question/11259903
Learn more about cellular respiration at brainly.com/question/11203046
#LearnWithBrainly
answer: D. Graph D I took the quiz
A few various areas which differ from each other
- Prophase i has homologous chromosomes involved whereas Phrophase ii has individual chromosomes involved
- Phrophase i only occurs in diploid cells whereas ii occurs in haploid cells
These are the only important points I can differentiate them with. Hope it helps :)