The speed of the current in a river is 6 miles per hour
<em><u>Solution:</u></em>
Given that,
Speed of boat in still water = 20 miles per hour
Time taken = 3 hours
Distance downstream = 78 miles
To find: Speed of current
<em><u>If the speed of a boat in still water is u km/hr and the speed of the stream is v km/hr, then: </u></em>
Speed downstream = (u + v) km/hr
Speed upstream = (u - v) km/hr
<em><u>Therefore, speed downstream is given as:</u></em>

We know that,
Speed downstream = (u + v)
26 = 20 + v
v = 26 - 20
v = 6 miles per hour
Thus speed of the current in a river is 6 miles per hour
I believe the answer is 9.7e-6
Answer:
90
Step-by-step explanation:
10+67
7586+65
576845=8757685
2+88=90
Answer:
(a) 
(b) Domain:
<em>(See attachment for graph)</em>
(c) 
Step-by-step explanation:
Given



Solving (a): A function; l in terms of w
All we need to do is make l the subject in 
Divide through by 2

Subtract w from both sides


Reorder

Solving (b): The graph
In (a), we have:

Since l and w are the dimensions of the fence, they can't be less than 1
So, the domain of the function can be 
--------------------------------------------------------------------------------------------------
To check this
When 



When 


--------------------------------------------------------------------------------------------------
<em>See attachment for graph</em>
<em></em>
Solving (c): Write l as a function 
In (a), we have:

Writing l as a function, we have:

Substitute
for l in 
becomes
