1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlada [557]
3 years ago
13

A realtor is studying the graph above, which shows the expected value of properties in her area over the next 24 years. If t rep

resents the number of years after 2014, in what year should the increase in property values start to slow down?

Mathematics
1 answer:
sleet_krkn [62]3 years ago
7 0

Answer:

2030

Step-by-step explanation:

the graph starts to decline 16 years after 2014 so 2014 + 16 = 2030

You might be interested in
Raul has 56 bouncy balls. He puts three times as many balls into red bags as he puts into green gift bags. If he puts the same n
Sati [7]
If we divide 56 by 4 we get 14.  Why by4?  So that one number is 3 times the other So he had 14 balls that went into the green bags and 42 (56-14) that went into the red bags.  We could just answer the question and say 14 but I think they want to know how many in each green bag.
14 and 42 don't work because they are not the same number of balls.  What number is a common factor?  7 is,
We could have 2 green bags and split the 14 balls into 2 groups of 7 and with the remaining 42 - put them into 6 red bags of 7 each.
And so the answer to your question is:
7 ball in each bag  = 2 bags are green, and 6 bags are red
                                        14 balls              +    42 balls            = 56 bouncy balls
 
6 0
3 years ago
Read 2 more answers
Help me please. <br>Help me please. <br>Help me please.
Gnesinka [82]
A)
To be similar triangles have to have equal angles
triangle ZDB' 
1)angle Z=90 degrees
triangle B'CQ
1) angle C 90 degrees

angle A'B'Q=90
DB'Z+A'B'Q+CB'Q=180, straight angle
DB'Z+90+CB'Q=180
DB'Z+CB'Q=90

triangle ZDB'
DZB'+DB'Z=180-90=90

DB'Z+CB'Q=90
DZB'+DB'Z=90
DB'Z+CB'Q=DZB'+DB'Z
2)CB'Q=DZB' (these angles from two triangles ZDB' and B'CQ )
3)so,angles DB'Z and B'QC are going to be equal because of sum of three angles in triangles =180 degrees and 2 angles already equal.
so this triangles are similar by tree angles
b)
B'C:B'D=3:4
B'D:DZ=3:2
CQ-?
DC=AB=21
DC=B'C+B'D (3+4= 7 parts)
21/7=3
B'C=3*3=9
B'D=3*4=12
B'D:DZ=3:2
12:DZ=3:2
DZ=12*2/3=8
B'D:DZ=CQ:B'C
3:2=CQ:9
CQ=3*9/2=27/2

c)
BC=BQ+QC=B'Q+QC
BQ' can be found by pythagorean theorem



3 0
3 years ago
Andrea has 3 tiles. One is a regular octagon, one is a regular pentagon and one is a regular hexagon. Andrea thinks the 3 tiles
HACTEHA [7]

From calculations, we can say that the given tiles will not fit together perfectly.

<h3>How to find the sum of interior angles of a Polygon?</h3>

If the tiles join perfectly at a point, sum of all angles around the joining point should be 360°.

Expression for the measure of the interior angle of a polygon,

Interior angle of a polygon = [(n - 2) * 180]/n

Interior angle of a pentagon = [(5 - 2) * 180]/5 = 108°

Interior angle of a hexagon = [(6 - 2) * 180]/6 = 120°

Interior angle of an octagon = [(8 - 2) * 180]/8 = 135°

To prove that the given tiles fit together perfectly → Sum of all the angles around the common point should be 360°

Sum of all interior angles = 108° + 120° + 135° = 363°

Therefore, given tiles will not fit together perfectly.

Read more about Interior angles of a Polygon at; brainly.com/question/224658

#SPJ1

4 0
1 year ago
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\&#10;(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\&#10;(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\&#10;S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=&#10;\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\&#10;

=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}&#10;\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\&#10;S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\&#10;S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=&#10;\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=&#10;\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\&#10;\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=&#10;\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
HELP PLEASE ANSWER!!!!
Basile [38]

Answer: AAS

Step-by-step explanation:

Two sides are congruent, two angles are congruent, and vertical angles are congruent

5 0
3 years ago
Other questions:
  • you draw two cards from a well-shuffled deck of 52 cards. After you draw the first card, you do not replace it in the deck. What
    9·1 answer
  • Mr. James is 4 times as old as his daughter. The difference in their ages is 36 years. Find their ages.
    11·1 answer
  • How long will it take 680 dollars to earn 102 dollars in simple interest at an annual interest rate of 3%? Show your work in an
    6·1 answer
  • If you want brainliest answer this
    6·2 answers
  • What is the value of 21 + 6² - (35 - 8) ×3? A. 90 B. 0 C. -24 D. -54
    15·2 answers
  • What is the answer to this ?????? 4/5 - 1/2=?????
    6·1 answer
  • Kate had 50 50 tickets to use for rides at the fair. She lost some of them. Her dad doubled the tickets she had left. Kate wrote
    15·2 answers
  • Help I need a awnser
    12·1 answer
  • There can be more then one answer
    5·1 answer
  • Three of seven students ate apples for lunch. What is the ratio of students who ate apples to students who did not eat apples fo
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!