A common misconception in statistics is confusing correlation with causation. If two events are correlated, it merely means that they share the same behaviour over time, but it doesn't imply in any way that those event are related by a common cause, or even worse, that one implies the other.
You can find several (even humorous) counter examples online. For example, if you plot the number of reported pirates assault against the global temperature in the last years, you'll se that temperature is rising (unfortunately...) while pirates are almost disappearing.
One could observe this strong negative correlation and claim that hotter climate has solved the pirate issue. Of course this is a joke, but it explains why you shouldn't confuse correlation with causation.
Answer:
0.58x3=1.74
Step-by-step explanation:
first, you line up the numbers, easiest with the 0.58 on top. then, you multiply 3x8, which is 24. you put the four in the hundredths place, and carry the two. then, you multiply 3x5 and get 15, and add the two, making it 17. you put the seven in the tenths place, and carry the one the ones place. then you will multiply three by zero and get zero. finally, you add the one, and your answer is 1.74.
Answer:
10
Step-by-step explanation:
The first thing you do is:
12 % 6 = 2
Then you have to:
2 x 5 = 10
You divide the denominator then multiply it by the Numerator