Multiplication not to sure hope this helps :)
Just make a triangle and an X and Y axis and reflect it over the Y axis. It's that simple. Then tell how you did it. Obviously it will be a reflection. Name the points (before and after) and you are done.
-Twix
Answer:
Given a square ABCD and an equilateral triangle DPC and given a chart with which Jim is using to prove that triangle APD is congruent to triangle BPC.
From the chart, it can be seen that Jim proved that two corresponding sides of both triangles are congruent and that the angle between those two sides for both triangles are also congruent.
Therefore, the justification to complete Jim's proof is "SAS postulate"
Step-by-step explanation:
so, we have two 54x18 rectangles, so their perimeter is simply all those units added together, 54+54+54+54+18+18+18+18 = 288.
we know the circle's diameter is 1.5 times the width, well, the width is 18, so the diameter of the circle must be 1.5*18 = 27.
![\bf \stackrel{\textit{circumference of a circle}}{C=d\pi }~~ \begin{cases} d=diameter\\[-0.5em] \hrulefill\\ d=27 \end{cases}\implies C=27\pi \implies C=\stackrel{\pi =3.14}{84.78} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{perimeter of the rectangles}}{288}~~~~+~~~~\stackrel{\textit{perimeter of the circle}}{84.78}~~~~=~~~~372.78](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bcircumference%20of%20a%20circle%7D%7D%7BC%3Dd%5Cpi%20%7D~~%20%5Cbegin%7Bcases%7D%20d%3Ddiameter%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20d%3D27%20%5Cend%7Bcases%7D%5Cimplies%20C%3D27%5Cpi%20%5Cimplies%20C%3D%5Cstackrel%7B%5Cpi%20%3D3.14%7D%7B84.78%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bperimeter%20of%20the%20rectangles%7D%7D%7B288%7D~~~~%2B~~~~%5Cstackrel%7B%5Ctextit%7Bperimeter%20of%20the%20circle%7D%7D%7B84.78%7D~~~~%3D~~~~372.78)