You can think of an <em>inverse </em>function as a function that “unwraps” x from whatever operations are attached to it. In the case of F(x) = √x, we can ”unwrap” x by squaring it. This narrows our options down to either A or D. Keep in mind that since there are no real number solutions to the square root of a negative number, we need to limit our domain to non-negative values. In other words, x ≥ 0. With that restriction, our answer is A.
$4.30X40%=1.72
4.30-1.72=2.58
2.58X6%=.15
2.58+.15=2.73
Final price: $2.73
Answer:
A
Step-by-step explanation:
It has one asymptote at x = -1,0
Have a nice day!
You cant simplify that fraction
Answer:
Cardiac output:
Step-by-step explanation:
Given : The dye dilution method is used to measure cardiac output with 3 mg of dye.
To Find : Find the cardiac output.
Solution:
Formula of cardiac output:
---1
A = 3 mg

Do, integration by parts
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[20t\int{e^{-0.6t} \,dt}-\int[\frac{d[20t]}{dt}\int {e^{-0.6t} \, dt]dt]^{10}_0](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B20t%5Cint%7Be%5E%7B-0.6t%7D%20%5C%2Cdt%7D-%5Cint%5B%5Cfrac%7Bd%5B20t%5D%7D%7Bdt%7D%5Cint%20%7Be%5E%7B-0.6t%7D%20%5C%2C%20dt%5Ddt%5D%5E%7B10%7D_0)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20}{0.6}\int {e^{-0.6t} \,dt]^{10}_0](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-20te%5E%7B-0.6t%7D%7D%7B0.6%7D%2B%5Cfrac%7B20%7D%7B0.6%7D%5Cint%20%7Be%5E%7B-0.6t%7D%20%5C%2Cdt%5D%5E%7B10%7D_0)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-20te^{-0.6t}}{0.6}+\frac{20e^{-0.6t}}{(0.6)^2}]^{10}_{0}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-20te%5E%7B-0.6t%7D%7D%7B0.6%7D%2B%5Cfrac%7B20e%5E%7B-0.6t%7D%7D%7B%280.6%29%5E2%7D%5D%5E%7B10%7D_%7B0%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=[\frac{-200e^{-6}}{0.6}+\frac{20e^{-6}}{(0.6)^2}]+\frac{20}{(0.60^2}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5B%5Cfrac%7B-200e%5E%7B-6%7D%7D%7B0.6%7D%2B%5Cfrac%7B20e%5E%7B-6%7D%7D%7B%280.6%29%5E2%7D%5D%2B%5Cfrac%7B20%7D%7B%280.60%5E2%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0=\frac{20(1-e^{-6}}{(0.6)^2}-\frac{200e^{-6}}{0.6}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%3D%5Cfrac%7B20%281-e%5E%7B-6%7D%7D%7B%280.6%29%5E2%7D-%5Cfrac%7B200e%5E%7B-6%7D%7D%7B0.6%7D)
![[\int{20te^{-0.6t}} \, dt]^{10}_0\sim {54.49}](https://tex.z-dn.net/?f=%5B%5Cint%7B20te%5E%7B-0.6t%7D%7D%20%5C%2C%20dt%5D%5E%7B10%7D_0%5Csim%20%7B54.49%7D)
Substitute the value in 1
Cardiac output:
Cardiac output:
Hence Cardiac output: