Correct question :
If the perimeters of each shape are equal, which equation can be used to find the value of x? A triangle with base x + 2, height x, and side length x + 4. A rectangle with length of x + 3 and width of one-half x. (x + 4) + x + (x + 2) = one-half x + (x + 3) (x + 2) + x + (x + 4) = 2 (one-half x) + 2 (x + 3) 2 (x) + 2 (x + 2) = 2 (one-half x) + 2 (x + 3) x + (x + 2) + (x + 4) = 2 (x + 3 and one-half)
Answer: (x + 2) + x + (x + 4) = 2 (one-half x) + 2 (x + 3)
Step-by-step explanation:
Given the following :
A triangle with base x + 2, height x, and side length x + 4 - - - -
b = x + 2 ; a = x ; c = x + 4
Perimeter (P) of a triangle :
P = a + b + c
P =( x + 2) + x + (x + 4) - - - (1)
A rectangle with length of x + 3 and width of one-half x
l = x + 3 ; w = 1/2 x
Perimeter of a rectangle (P) = 2(l+w)
P = 2(x+3) + 2(1/2x)
If perimeter of each same are the same ; then;
(1) = (2)
(x + 2) + x + (x + 4) = 2(x+3) + 2(1/2x)
Answer:
vertical angles
Step-by-step explanation:
When two lines intersect at a single point, they form 4 angles. Two angles that are not adjacent are vertical angles. With an intersection of two lines art a single point, there are two pairs of vertical angles. Angles 1 and 2 are vertical angles.
Answer:
the answer is B
Step-by-step explanation:
By rearranging it:
-3x-2x-22xy+4y
=-5x-22xy+4y answer
A.) R(20) = -10(20)^2 + 800(20) = -10(400) + 16000 = -4000 + 16000 = $12,000
R(25) = -10(25)^2 + 800(25) = -10(625) + 20000 = -6250 + 20000 = $13,750
R(30) = -10(30)^2 + 800(30) = -10(900) + 24000 = -9000 + 24000 = $15,000
b.) For maximum revenue, dR/dp = 0
dR/dp = -20p + 800 = 0
20p = 800
p = 40
Therefore, the maximum revenue will be recorded when the price is set at $40.