Supplementary angles , when added, = 180
complimentary angles, when added, = 90
< AQC + < GQC = 180.....supplementary
< BQD + < DQE = 90.......complimentary
< CQE + < EQF = 90.......complimentary
< GQF , < FQE.....neither
< BQC + < DQC = 90....complimentary
< W and < X are supplementary...
if < W = 37, then < X = (180 - 37) = 143
< S and < T are complimentary
if < S = 64, then < T = (90 - 64) = 26
< C and < D are supplementary
if < C = 83, the < D = (180 - 83) = 97
cant read all of the last one.....but if they are complimentary, and
< U = 41, then the other angle is : (90 - 41) = 49

Actually Welcome to the Concept of the Differential Calculus.
Since, we know this is a definite calculus,
thus we get here as, by using the Chain Rule.
Answer:
The two triangles are related by angles, so the triangles are similar but not proven to be congruent.
Step-by-step explanation:
Because the triangles have the same angles, they are congruent. The definition of congruence is if you take a shape and scale it up or down (or keep it the same) therefore, they are congruent.
Hope this helped, have a nice day
EDIT: I screwed up, I thought it was supposed to be similar. These triangles are SIMILAR not congruent. The actual answer is they are related by AAA similarity but they are similar, but they are not proven to be congruent. Hope this clears it up, and sorry.
~cloud
Answer:
C
Step-by-step explanation:
7*7=49