Answer:
Nerve cells release chemical signals into synapses between them (short distance). They also transverse their lengths with an electrical signal that can result in signal travel along a series of cells (long distance).
Explanation:
Nerve cells release neurotransmitters in the synaptic cleft which are capable of affecting nearby cells such as other nerve cells and muscle cells. Neurotransmitter molecules include, among others, serotonin, acetylcholine, dopamine, norepinephrine and histamine. Moreover, the synaptic cleft is the space that separates a neuron cell and its target cell. On the other hand, neurons transmit signals through electrical impulses. Electrical impulses travel long distances in the body carried by axons of the nerves. Thus, nerve impulses connect the brain and spinal cord and they carry signals to different parts of the body.
The answers are
B. large grain sizes C. more precipitation D. warmer temperatures
The Cross-Linkage Theory or also referred to as the glycosylation theory of aging was discovered or proposed by Johan Bjorksten in the 1940s. According to this theory, the aggregation of cross-linked proteins can damage cells and tissues this slowing down the bodily processes that eventually results to aging. In recent studies, cross-linking is associated with age-related changes in the studied proteins. Furthermore, this theory stresses out that the binding of glucose to proteins can cause various problems. Once the said binding occurs, the protein becomes impaired which leads to its performance inefficiency. Living a longer life would also mean increasing the possibility of oxygen-glucose meeting and protein. Some of the known cross-linking disorders include senile cataract and the appearance of tough, leathery, yellow skin.
C. testable and observable