Answer:
5:2
Step-by-step explanation:
We have been given that triangles △ABC and △DFG are similar. The lengths of the two corresponding sides are 1.4 m and 56 cm.
Since both triangles are similar, therefore all corresponding sides will have same proportion.
Let us find proportion of corresponding sides of both triangles.
1 meter = 100 centimeter
1.4 meter = 1.4* 100 centimeters = 140 centimeters.


The ratio of sides of △ABC to sides of△DFG is 5:2.
Since perimeter of a triangle is sum of lengths of three sides of the triangle and all sides of both triangle have the ratio 5:2, therefore, their perimeters will be in same ratio, that is 5:2.