Answer:
42. Graph a
43. Not possible.
44. Graph e
45. Graph c
46. Graph b.
Step-by-step explanation:
42. 7x + 13 ≥ 55
⇒ x ≥ 6
So, it matches graph a.
43. 12x - 8 > 4(3x + 2)
⇒ 12x - 8 > 12x + 8
Hence, d. not possible.
44.
⇒
⇒ x > - 8
Hence, graph e matches.
45. - 4(- 2x + 3) ≤ 5 + 8x
⇒ 8x - 12 ≤ 5 + 8x
⇒ - 12 ≤ 5
This is true for all values of x, hence that matches graph c.
46. - 4(x + 3) > 8(x + 3)
⇒ - 4x - 12 > 8x + 24
⇒ 12x < - 36
⇒ x < - 3
Hence, graph b matches the situation. (Answer)
Answer:
p= 2.5
q= 7
Step-by-step explanation:
The lines should overlap to have infinite solutions, slopes should be same and y-intercepts should be same.
Equations in slope- intercept form:
6x-(2p-3)y-2q-3=0 ⇒ (2p-3)y= 6x -2q-3 ⇒ y= 6/(2p-3)x -(2q+3)/(2p-3)
12x-( 2p-1)y-5q+1=0 ⇒ (2p-1)y= 12x - 5q+1 ⇒ y=12/(2p-1)x - (5q-1)/(2p-1)
Slopes equal:
6/(2p-3)= 12/(2p-1)
6(2p-1)= 12(2p-3)
12p- 6= 24p - 36
12p= 30
p= 30/12
p= 2.5
y-intercepts equal:
(2q+3)/(2p-3)= (5q-1)/(2p-1)
(2q+3)/(2*2.5-3)= (5q-1)/(2*2.5-1)
(2q+3)/2= (5q-1)/4
4(2q+3)= 2(5q-1)
8q+12= 10q- 2
2q= 14
q= 7
Answer:
90
Step-by-step explanation:
<u>ANSWER</u>
It is not one-to-one function
<u>EXPLANATION</u>
A one-to-one function must pass the horizontal line test.
The graph described in the question looks like the one in the attachment.
A horizontal line drawn in red cuts the graph at more than one point.
Therefore the parabola shown facing up with a vertex
is not a one-to-one function.