In order to find out the ranking of ions basicity, check the
pKa values of each ions. The principle that you need to remember is that the
stronger the acid the weaker the corresponding conjugate base. The pKa dictates
acid value of the compound. The answer would be CH3NH, CH3O-, and CH3CH2-.
<span>We look at the end of the day:
n(HNO3) added = 0.500*17.0/1000 = 0.00850 mol
n(NH3) = 0.200*75.0/1000 - 0.00850 = 0.00650 mol
[NH3] left = 0.00650*1000/(17.0+75.0) = 0.070652
M [OH-] = Kb * [NH3] = 0.070652*1.8*10^(-5) = 1.27174 x 10^(-6)
pOH = -log[OH-] ≈ 5.8956 pH = 14 - pOH ≈ 8.10</span>
Here, we should use combined gas law which can be derived from combined gas law, “PV=nRT”. Rearranging, we can get PV/T=nR. Then we can set the two states in the problem together to get
P1V1/T1 = P2V2/T2
Then just plug in and solve algebraically.
Hope this helps
Answer:
a) V air/day = 8640 L air an adult breaths / day
b) 0.0181 L CO intake a person / day
Explanation:
a) one average person has 12 breaths for min:
in each breath it take an average of 500 mL on air.
⇒ 12 breath / min * 500mL air / breath = 6000 mL air / min
the average air volume per day of a person is:
⇒ Vair/day = 6000 mL air / min * (60 min / h) * ( 24 h / day ) = 8640000 mLair / day * ( L / 1000 mL)
⇒ V air / day = 8640 L / day
b) 2.1 E-6 L CO / L air * 8640 L air / day = 0.0181 L CO / day