To determine the mass of the sample, first find the volume difference after and before the aluminum was placed, the volume change is equal to the volume of the submerged object, in this case aluminum.
Then knowing volume of aluminum and the density of it, we can solve for the mass.
D = m/v
Dv = m
2.7 g/ml • 8 ml = 21.6 grams.
Answer:
Its molecules are made up of 60 carbon atoms joined together by strong covalent bonds. Molecules of C 60 are spherical. There are weak intermolecular forces between molecules of buckminsterfullerene. These need little energy to overcome, so buckminsterfullerene is slippery and has a low melting point.
Explanation:
Answer:
31.7 °C
Explanation:
Charles law states that for volume of a gas is directly proportional to the absolute temperature for a fixed amount of gas at constant pressure
we can use the following equation
V1/T1 = V2/T2
where V1 is volume and T1 is temperature at first instance
V2 is volume and T2 is temperature at second instance
temperature should be in kelvin scale
T1 - 0 °C + 273 = 273 K
substituting the values in the equation
22.4 L / 273 K = 25.0 L / T2
T2 = 304.7 K
temperature in celcius is - 304.7 K - 273 = 31.7 °C
the gas must be 31.7 °C to reach a volume of 25.0 L
Answer:
Being a weak acid and a strong base, where it is diluted in a neutral medium such as water, the basic medium predominates, almost alkaline pH.
Explanation:
The acidity of the solution, being weak, means that its pH is not so low, therefore it will be easier to reach the values of 7 or 7 where alkalinity or basity is indicated.
D) basic ions contain some H+ ions