if you look at the part where the first part connects with the second part:
y = 5 if x < - 2
y = -2x + 1 if -2 ≤ x < 1
we don't have a discontinuity there, so there shouldn't be a dot.
<h3>
</h3><h3>
What is wrong with the graph?</h3>
When we graph over intervals like (a, b) or [a, b] or something like that, we use dots to define the end of the intervals, and to denote that the function ends abruptly or we have a jump.
In this case, you can see that between the end and the second part and the beginning of the third part there is a jump, so the use of dots is correct there, but if you look at the part where the first part connects with the second part:
y = 5 if x < - 2
y = -2x + 1 if -2 ≤ x < 1
we don't have a discontinuity there, so there shouldn't be a dot.
That is the only error with the graph.
If you want to learn more about piecewise functions:
brainly.com/question/3628123
#SPJ1
Answer:
To solve the above problem we will use the unitary method as follows
As estimated If £ 3 is equivalent to € 4
Then, £ 1 will be equivalent to = € \frac{4}{3}
£ 64.60 will be equivalent to = € \frac{4}{3} \times 64.60 = 1.3333 \times 64.60 = 86.1311
Now you have to round the answer up to 2 decimal points to get the final answer
€ 86.1311 ≈ € 86.13
Thus, £ 64.60 is approximately equal to € 86.13.
Step-by-step explanation:
hope this helps if not let me now
Try this option:
according to the condition w+l=48 and w*l=95.
Using these two equation:
After 1st year: 250$:100%=x$:116%, 250$*116%=x$*100%, x=(250*116)/100=290$. After 1st year I will have 290$
After 2nd year: 290$:100%=x$:116%, x=(290*116)/100=336.4$. After 2nd year I will have 336.4$
After 3rd year I will have (336.4*116)/100=390.224$
After 4th yr: (390.224*116)/100=452.65984$
After 5th yr: (452.65984*116)/100=525.085$
After- 6th yr: 609.1$, 7th yr: 706.556$, 8th yr: 819.605$, 9th yr: 950.742$
10th yr: 1102.86$, 11th yr: 1279.32$, 12th yr: 1484.01$, 13th yr: 1721.45$,
14th yr: 1996.88$, 15th: 2316.38$, 16th yr: 2687$, 17th yr: 3116.92$
After 18 years I will have 3615.63$.