The HCl added = 1.25 moles
and the moles of Na2HPO4 = 1 mole
Now when acid is added in the given solution of Na2HPO4
One mole of H+ will react with one mole of Na2HPO4 to given one mole of NaH2PO4
Na2HPO4 + H+ ---> NaH2PO4
Now this one mole formed NaH2PO4 will further react with 0.25 moles of H+ left to form 0.25 moles of H3PO4 and 0.75 moles of NaH2PO4 will remain in the solution
So this will result into formation of a buffer of phosphoric acid and NaH2PO4
NaH2PO4 + H+ ---> H3PO4
pKa of H3PO4 = 2.1
so pH = pKa + log [salt] / [acid] = 2.1 + log [0.75 / 0.25] = 2.58
so the pH will be in between 2.1 to 7.2
Answer:
- Elimination
- Elimination
- Zaitsev
- Zaitsev
- Carbocation
Explanation:
- The mechanism is generally accepted to always operate via an ELIMINATION step-wise process.
- The ELIMINATION mechanism process will always produce (after dehydration) a ZAITSEV style alkene as major product
- The driving force for the production of this ZAITSEV style alkene product is generally going to be determined by stability of the CARBOCATION
Elimination mechanism is the removal of two substituents from a molecule in either a one- or two-step mechanism
Carbocation is a molecule containing a positive charged carbon atom and three bonds
Answer:
1x10^–9 M
Explanation:
From the question given,
Concentration of hydronium ion, [H3O+] = 1x10^-5 M.
Concentration of Hydroxide ion, [OH-] =..?
The concentration of the hydroxide ion, [OH-] can be obtained as follow:
[H3O+] x [OH-] = 1x10^–14
1x10^-5 M x [OH-] = 1x10^–14
Divide both side by 1x10^-5
[OH-] = 1x10^–14 / 1x10^-5
[OH-] = 1x10^–9 M
The tall trees much of the sun
have you ever been in a forest? if you have, you’ve probably noticed that it’s usually very shady, and not a lot of sunlight hits the ground. That’s cause the tall trees are so dense, the sunlight doesn’t reach the ground
<h3><u>Answer;</u></h3>
Decrease in pressure
<h3><u>Explanation;</u></h3>
- If the pressure of a system is increased, the reaction will shift toward the side with fewer moles of gas, whereas when the pressure of a system is decreased, the reaction will shift toward the side with more moles of gas.
- In this case; <em><u>If the pressure of the system with the above reaction decreases, the reaction will shift to the left. The reactants side has more moles of gas, so the reaction will shift toward the direction of the reactants.</u></em>