Answer:
The temperature difference of the body after 3 hours = 5.16 K
Explanation:
we know that the number of moles of O₂ inhaled are 0.02 mole/min⁻¹
or, 1.2 mole.h⁻¹
The average heat evolved by the oxidation of foodstuffs is then:
⇒ Q avg =
= 7.2 kj.h⁻¹.Kg⁻¹
the heat produced after 3 h would be:
= 7.2 kj. h⁻¹.Kg⁻¹ x 3 h
= 21.6 kj. kg⁻¹
= 21.6 x 10³ j kg⁻¹
We know Qp = Cp x ΔT
Assume the heat capacity of the body is 4.18 J g⁻¹K⁻¹
⇒ ΔT = 
⇒ ΔT = 
⇒ ΔT = 5.16 K
Can hold max of 8 electrons
Explanation:
As it is known that there are two types of properties. These are extensive and intensive.
Extensive properties : Properties that depend on the size or amount of system. For example, mass, volume etc.
Intensive properties : Properties that do not depend on the size or amount of system. For example, density, melting point, specific heat capacity etc.
On the basis of these properties water and ethanol are distinguished as follows.
- Density of water is 997 kg/
whereas density of ethanol is 789 kg/
. Both these liquids can be separated by intensive properties. - Melting point of water is zero degree celsius whereas melting point of ethanol is -114.1 degree celsius.
- Specific heat capacity of water is 4.184
whereas specific heat capacity of ethanol is 2.46
. - Mass of the given liquids cannot be differentiated because they will keep on changing depending on the quantity required. As mass is an extensive property, therefore, it is difficult to differentiate between the two liquids.
Thus, we can conclude that properties like density, melting point, specific heat capacity can help a chemist distinguish between ethanol and water.
Nolur acil lütfen yalvarırım yalvarırım
Answer:
0.03g/mL
Explanation:
Given parameters include:
Five μL of a 10-to-1 dilution of a sample; This implies the Volume of dilute sample is given as 5 μL
Dilution factor = 10-to-1
The absorbance at 595 nm was 0.78
Mass of the diluted sample = 0.015 mg
We need to first determine the concentration of the diluted sample which is required in calculating the protein concentration of the original solution.
So, to determine the concentration of the diluted sample, we have:
concentration of diluted sample = 
=
(where ∝ was use in place of μ in the expressed fraction)
= 0.003 mg/μL
The dilution of the sample is from 10-to-1 indicating that the original concentration is ten times higher; as such the protein concentration of the original solution can be calculated as:
protein concentration of the original solution = 10 × concentration of the diluted sample.
= 10 × 0.003 mg/μL
= 0.03 mg/μL

= 0.03g/mL
Hence, the protein concentration of the original solution is known to be 0.03g/mL